精英家教网 > 高中数学 > 题目详情
15.若(2x-$\frac{1}{{x}^{2}}$)n的展开式中所有二项式系数和为64,则n=6;展开式中的常数项是240.

分析 利用二项式系数的性质求得n的值,再利用二项展开式的通项公式,求得展开式中的常数项.

解答 解:∵(2x-$\frac{1}{{x}^{2}}$)n的展开式中所有二项式系数和为2n=64,则n=6;
根据(2x-$\frac{1}{{x}^{2}}$)n=(2x-$\frac{1}{{x}^{2}}$)6的展开式的通项公式为Tr+1=${C}_{6}^{r}$•(-1)r•(2x)6-r•x-2r =${C}_{6}^{r}$•(-1)r•26-r•x6-3r
令6-3r=0,求得r=2,可得展开式中的常数项是${C}_{6}^{2}$•24=240,
故答案为:6;240.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.A、B分别是复数z1、z2在复平面内对应的点,O是原点,若|z1+z2|=|z1-z2|,则三角形AOB一定是(  )
A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.曲线y=xlnx在点(e,e)处的切线斜率为(  )
A.eB.2eC.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.体积为$\frac{4π}{3}$的球与正三棱柱的所有面均相切,则该棱柱的体积为6$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=-2+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.(t$为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为$ρ=\sqrt{6}$.
(1)写出直线l的普通方程和曲线C1的参数方程;
(2)若将曲线C1上各点的横坐标缩短为原来的$\frac{{\sqrt{6}}}{6}$倍,纵坐标缩短为原来的$\frac{{\sqrt{2}}}{2}$倍,得到曲线C2,设点P是曲线C2上任意一点,求点P到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合M={x|x2-4<0},N={x|1≤2x≤8,x∈Z},则N∩M=(  )
A.[0,2)B.{0,1}C.{0,1,2}D.{0,1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}的前n项和为Sn,若函数f(x)=sinx+$\sqrt{3}$cosx(x∈R)的最大值为a1,且满足an-anSn+1=$\frac{{a}_{1}}{2}$-anSn,则数列{an}的前2017项之积A2017=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知离心率为$\frac{{\sqrt{2}}}{2}$的椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$过点$({1,-\frac{{\sqrt{2}}}{2}})$,点F1,F2分别为椭圆的左、右焦点,过F1的直线l与C交于A,B两点,且${S_{△AB{F_2}}}=\frac{{4\sqrt{3}}}{5}$.
(1)求椭圆C的方程;
(2)求证:以AB为直径的圆过坐标原点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某校组织10名学生参加高校的自主招生活动,其中6名男生,4名女生,根据实际要从10名同学中选3名参加A校的自主招生,则其中恰有1名女生的概率是$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案