精英家教网 > 高中数学 > 题目详情
在长方体ABCD-A1B1C1D1中,E、F分别在BB1,DD1上,且AE⊥A1B,AF⊥A1D.
(1)求证:A1C⊥平面AEF;
(2)若AB=3,AD=4,AA1=5,M是B1C1的中点,求AM与平面AEF所成角的大小;
(3)在(2)的条件下,求三棱锥D-AEF的体积.
分析:(1)证明A1C⊥AE,A1C⊥AF,利用线面垂直的判定,即可证得A1C⊥面AEF;
(2)建立空间直角坐标系,用坐标表示
A1C
AM
,利用向量的夹角公式,即可求得AM与平面AEF所成的角;
(3)先计算DF,再利用等体积转化,即可求得三棱锥D-AEF的体积.
解答:(1)证明:∵BC⊥面A1B,∴A1C在面A1B上的射影为A1B
∵A1B⊥AE,AE?面A1B,∴A1C⊥AE,
同理A1C⊥AF,
∵AE∩AF=A,
∴A1C⊥面AEF.
(2)解:以C为原点,射线CD、CB、CC1分别为x轴、y轴、z轴的正半轴,建立空间直角坐标系,
则C(0,0,0),A(3,4,0),A1(3,4,5),M(0,2,5).
A1C
=(-3,-4,-5),
AM
=(-3,-2,5)
A1C
AM
的夹角为θ,则cosθ=
A1C
AM
|
A1C
||
AM
|
=-
4
19
95

∴AM与平面AEF所成的角大小为arcsin
4
19
95

(3)解:∵AF⊥A1D,∴△A1AD∽△ADF,∴
A1A
AD
=
AD
DF
,∴DF=
AD2
A1A
=
16
5

VD-AEF=VE-ADF=
1
3
×
1
2
×AD×DF×AB
=
1
3
×
1
2
×4×
16
5
×3=
32
5
点评:本题考查线面垂直,考查线面,考查三棱锥的体积,掌握线面垂直的判定,正确运用向量法求线面角是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在长方体ABCD-A'B'C'D'中,AB=
3
,AD=
3
,AA′=1,则AA′和BC′所成的角是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A′B′C′D′中,用截面截下一个棱锥C-A′DD′,求棱锥C-A′DD′的体积与剩余部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海) 如图,在长方体ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1.证明直线BC′平行于平面D′AC,并求直线BC′到平面D′AC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)(理)在长方体ABCD-A'B'C'D'中,AB=2,AD=1,AA'=1.
求:
(1)顶点D'到平面B'AC的距离;
(2)二面角B-AC-B'的大小.(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知在长方体ABCD-A′B′C′D′中,点E为棱CC′上任意一点,AB=BC=2,CC′=1.
(Ⅰ)求证:平面ACC′A′⊥平面BDE;
(Ⅱ)若点P为棱C′D′的中点,点E为棱CC′的中点,求二面角P-BD-E的余弦值.

查看答案和解析>>

同步练习册答案