精英家教网 > 高中数学 > 题目详情
已知矩阵A=
12
-2-3
,B=
01
1-2

(Ⅰ)求A-1以及满足AX=B的矩阵X.
(Ⅱ)求曲线C:x2-4xy+y2=1在矩阵B所对应的线性变换作用下得到的曲线C′的方程.
考点:变换、矩阵的相等,特征值与特征向量的计算
专题:选作题,矩阵和变换
分析:(Ⅰ)根据所给的矩阵求这个矩阵的逆矩阵,可以首先求出ad-bc的值,再代入逆矩阵的公式,求出结果.
(Ⅱ)确定变换前后坐标之间的关系,利用曲线C:x2-4xy+y2=1,可求在矩阵B所对应的线性变换作用下得到的曲线C′的方程.
解答: 解:(I)∵|A|=1≠0,故A-1=
-3-2
21
,…(4分)
X=A-1B=
-3-2
21
01
1-2
=
-21
10
.…(7分)
(II)矩阵B所对应的线性变换为
x′=y
y′=x-2y
,∴
x=2x′+y′
y=x′
,…(9分)
代入x2-4xy+y2=1得:-3x'2+y'2=1…(12分)
即所求曲线C'的方程为:3x2-y2+1=0…(13分)
点评:本题考查矩阵变换的应用,考查逆矩阵的求法.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果椭圆
x2
4
+
y2
3
=1上一点p到焦点F1的距离等于3,那么点p到另一个焦点F2的距离是(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
9
-
y2
4
=1的渐近线方程是(  )
A、2x±3y=0
B、3x±2y=0
C、9x±4y=0
D、4x±9y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:平面ABC⊥平面ACD,AB⊥平面BCD,BE⊥AC于点E.
(1)判断DC与BE的关系;
(2)求证:DC⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+2 , x<-1
x2 , -1≤x≤2
x+
4
x
 ,  x≥2

(1)在直角坐标系中画出f(x)的图象;
(2)若f(x)=5,求x值;
(3)用单调性定义证明函数f(x)在区间[2,+∞)上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-2 矩阵与变换
已知矩阵M=
a1
c0
的一个特征根为-1,属于它的一个特征向量
1
-3

(1)求矩阵M;
(2)求曲线x2+y2=1经过矩阵M所对应的变换得到曲线C,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,△ABC是边长为2的正三角形,△BCD为等腰直角三角形,且BD=CD,AE=2,AE⊥平面ABC,平面BCD⊥平面ABC.
(Ⅰ)求证:AC∥平面BDE;
(Ⅱ)求钝二面角C-DE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知a>0,b>0,c>0,d>0.求证:
ad+bc
bd
+
bc+ad
ac
≥4;
(2)已知a>0,b>0,c>0,a+b+c=1,证明:
a+
2
3
+
b+
2
3
+
c+
2
3
≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-3|
(1)解不等式f(x)<
x+1
2

(2)若f(x)-f(x+2)≤a对一切实数恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案