精英家教网 > 高中数学 > 题目详情
9.已知向量$\overrightarrow{m}$=(sinx,$\frac{3}{4}$),$\overrightarrow{n}$=(cosx,-1),则△ABC中,内角A、B、C的对边分别为a、b、c,若acosC+$\frac{\sqrt{2}}{2}$c=b.
(1)当$\overrightarrow{m}∥\overrightarrow{n}$时,求sin2x+sin2x的值;
(2)设函数f(x)=2($\overrightarrow{m}+\overrightarrow{n}$)$•\overrightarrow{n}$,求f(A)的值.

分析 (1)根据向量平行与坐标的关系列方程解出tanx,利用三角函数恒等变换化简求出;
(2)利用三角函数恒等变换化简得出A,求出f(x)的解析式,代入即可求出f(A).

解答 解:(1)$\overrightarrow{m}∥\overrightarrow{n}$,则-sinx-$\frac{3}{4}$cosx=0,即sinx=-$\frac{3}{4}$cosx.
∴tanx=-$\frac{3}{4}$.
∴sin2x+sin2x=$\frac{si{n}^{2}x+2sinxcosx}{si{n}^{2}x+co{s}^{2}x}$=$\frac{ta{n}^{2}x+2tanx}{ta{n}^{2}x+1}$=$\frac{\frac{9}{16}-\frac{3}{2}}{\frac{9}{16}+1}$=-$\frac{3}{5}$.
(2)f(x)=2($\overrightarrow{m}+\overrightarrow{n}$)$•\overrightarrow{n}$=2($\overrightarrow{m}$•$\overrightarrow{n}$+|$\overrightarrow{n}$|2)=2(sinxcosx-$\frac{3}{4}$+cos2x+1)=sin2x+cos2x+$\frac{3}{2}$.
由acosC+$\frac{\sqrt{2}}{2}$c=b知a•$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=b,
即b2+c2-a2=$\sqrt{2}$bc,
cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{-bc}$=$\frac{\sqrt{2}}{2}$,A∈(0,π),
故A=$\frac{π}{4}$,
所以f(A)=$\frac{5}{2}$.

点评 本题考查了三角函数的恒等变换,平面向量的数量积运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.空间四边形ABCD中,AB=CD,边AB.CD所在直线所成的角为30°,E、F分别为边BC、AD的中点,则直线EF与AB所成的角为(  )
A.75°B.15°C.75°或15°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某几何体的三视图如图所示,则该几何体的外接球的体积为(  )
A.12πB.$4\sqrt{3}π$C.$12\sqrt{3}π$D.$\frac{4}{3}\sqrt{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=x2+2x+2a与g(x)=|x-1|+|x+a|有相同的最小值,则不等式g(x)≥5的解集为(-∞,-3]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}为等差数列,公差为d,{bn}为等比数列,公比为q,a1=1,a1+a3=b2,2a22=b3
(1)求d与q的函数关系式;
(2)当d=3,且b1=2;
(I)求{bn}的通项公式;
(II)若cn=$\frac{{n}^{2}}{{a}_{n}{b}_{n}+1}$的前n项和为Tn,求证Tn>$\frac{8}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若双曲线$\frac{x^2}{2-k}+\frac{y^2}{k-1}$=1的焦点在x轴上,则实数k的取值范围是(  )
A.(一∞,1)B.(2,+∞)C.(1,2)D.(一∞,1)U(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=lnx-ax(a>0)的单调递增区间为(  )
A.(0,$\frac{1}{a}$)B.($\frac{1}{a}$,+∞)C.(-∞,$\frac{1}{a}$)D.(-∞,a)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数$y=\frac{1}{{\sqrt{-{x^2}+x+2}}}$的定义域是(  )
A.(-∞,-1)B.(-1,2)C.(-∞,-1)∪(2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点($\sqrt{3}$,$\frac{1}{2}$),且离心率为$\frac{\sqrt{3}}{2}$.
(Ⅰ)求椭圆Γ方程;
(Ⅱ)设直线y=x+m与椭圆Γ交于不同两点A,B,若点P(0,1)满足|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|,求实数m的值.

查看答案和解析>>

同步练习册答案