精英家教网 > 高中数学 > 题目详情
19.已知椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点($\sqrt{3}$,$\frac{1}{2}$),且离心率为$\frac{\sqrt{3}}{2}$.
(Ⅰ)求椭圆Γ方程;
(Ⅱ)设直线y=x+m与椭圆Γ交于不同两点A,B,若点P(0,1)满足|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|,求实数m的值.

分析 (Ⅰ)把已知点的坐标代入椭圆方程,结合椭圆的离心率和隐含条件求得a,b的值,则椭圆方程可求;
(Ⅱ)联立椭圆方程和直线方程,利用根与系数的关系求得AB的中点M的坐标,结合|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|得PM⊥AB,代入斜率公式得答案.

解答 解:(Ⅰ)∵椭圆过点($\sqrt{3}$,$\frac{1}{2}$),∴$\frac{3}{{a}^{2}}+\frac{1}{4{b}^{2}}=1$,
又∵$e=\frac{c}{a}=\frac{\sqrt{3}}{2}$,a2=b2+c2,解得a=2,b=1,
故椭圆方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$;
(Ⅱ)设A(x1,y1),B(x2,y2),
由$\left\{\begin{array}{l}{y=x+m}\\{{x}^{2}+4{y}^{2}-4=0}\end{array}\right.$,得5x2+8mx+4(m2-1)=0,
由△>0,得m∈($-\sqrt{5},\sqrt{5}$).
${x}_{1}+{x}_{2}=-\frac{8m}{5}$,${y}_{1}+{y}_{2}={x}_{1}+{x}_{2}+2m=\frac{2m}{5}$,
故AB的中点M($-\frac{4m}{5},\frac{m}{5}$).
∵|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|,∴PM⊥AB,则$\frac{\frac{m}{5}-1}{-\frac{4m}{5}}=-1$,得m=-$\frac{5}{3}$∈(-$\sqrt{5}$,$\sqrt{5}$).
∴实数m=-$\frac{5}{3}$.

点评 本题考查椭圆的简单性质,考查了椭圆方程的求法,训练了向量法在求解圆锥曲线问题中的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{m}$=(sinx,$\frac{3}{4}$),$\overrightarrow{n}$=(cosx,-1),则△ABC中,内角A、B、C的对边分别为a、b、c,若acosC+$\frac{\sqrt{2}}{2}$c=b.
(1)当$\overrightarrow{m}∥\overrightarrow{n}$时,求sin2x+sin2x的值;
(2)设函数f(x)=2($\overrightarrow{m}+\overrightarrow{n}$)$•\overrightarrow{n}$,求f(A)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.直三棱柱A1B1C1-ABC,$∠ACB=\frac{π}{2},AC=BC=2,C{C_1}=2\sqrt{2}$,E,F,H为AC,B1C1,BB1的中点,
(1)证明:EF∥平面AA1B1B;
(2)求异面直线EF与C1H所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题:①$\left.\begin{array}{l}a⊥α\\ b?α\end{array}\right\}⇒a⊥b$;②$\left.\begin{array}{l}a⊥α\\ a∥b\end{array}\right\}⇒b⊥α$;③$\left.\begin{array}{l}a⊥b\\ b?α\end{array}\right\}⇒a⊥α$;④$\left.\begin{array}{c}a⊥α\\ b∥α\end{array}\right\}⇒b⊥a$;⑤$\left.\begin{array}{l}a⊥α\\ b⊥a\end{array}\right\}⇒b∥a$,其中正确命题的个数是(  )
A.2个B.4个C.5个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知把函数f(x)=$\sqrt{3}$sinxcosx+cos2x的图象向右平移$\frac{π}{12}$个单位,再把横坐标扩大到原来的2倍,再向下平移$\frac{1}{2}$个单位,得到函数g(x),则函数g(x)从原点起与x轴的正半轴,直线x=$\frac{π}{2}$围成的面积为(  )
A.2B.$\frac{π}{2}$C.1D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为矩形,AB=2,BC=4,PA=4,则该四棱锥外接球的表面积为(  )
A.B.36πC.72πD.144π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某厂生产的零件外径ξ~N(10,0.04),今从该厂上、下午生产的零件中各取一件,测得外径分别为10.5cm,9.3cm,则可认为(  )
A.上午生产情况正常,下午生产情况异常
B.上午生产情况异常,下午生产情况正常
C.上、下午生产情况均正常
D.上、下午生产情况均不正常

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.对于集合M、N,定义M-N={x|x∈M且x∉N},M⊕N=(M-N)∪(N-M),设A={x|x≥-$\frac{9}{4}$},B={y|y=-2x2,x∈R},则A⊕B=(  )
A.(-$\frac{9}{4}$,0]B.[-$\frac{9}{4}$,0)C.(-∞,-$\frac{9}{4}$)∪[0,+∞)D.(-∞,-$\frac{9}{4}$)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数$f(x)=alnx+\frac{{2{a^2}}}{x}$(a≠0).
(1)已知曲线y=f(x)在点(1,f(1))处的切线l的斜率为2-3a,求实数a的值;
(2)讨论函数f(x)的单调性;
(3)在(1)的条件下,求证:任意x>0,都有f(x)≥3-x.

查看答案和解析>>

同步练习册答案