7£®ÏÂÁÐÃüÌ⣺¢Ù$\left.\begin{array}{l}a¡Í¦Á\\ b?¦Á\end{array}\right\}⇒a¡Íb$£»¢Ú$\left.\begin{array}{l}a¡Í¦Á\\ a¡Îb\end{array}\right\}⇒b¡Í¦Á$£»¢Û$\left.\begin{array}{l}a¡Íb\\ b?¦Á\end{array}\right\}⇒a¡Í¦Á$£»¢Ü$\left.\begin{array}{c}a¡Í¦Á\\ b¡Î¦Á\end{array}\right\}⇒b¡Ía$£»¢Ý$\left.\begin{array}{l}a¡Í¦Á\\ b¡Ía\end{array}\right\}⇒b¡Îa$£¬ÆäÖÐÕýÈ·ÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®2¸öB£®4¸öC£®5¸öD£®3¸ö

·ÖÎö ¸ù¾Ý¿Õ¼äÖ±ÏßÓëÆ½ÃæµÄλÖùØÏµ£¬ÖðÒ»·ÖÎöÎå¸ö½áÂÛµÄÕæ¼Ù£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£ºÓÉÏßÃæ´¹Ö±µÄ¶¨ÒåÖª£º$\left.\begin{array}{l}a¡Í¦Á\\ b?¦Á\end{array}\right\}⇒a¡Íb$£»¼´¢ÙÎªÕæÃüÌ⣻
ÓÉÏßÃæ´¹Ö±µÄµÚ¶þÅж¨¶¨ÀíÖª£º$\left.\begin{array}{l}a¡Í¦Á\\ a¡Îb\end{array}\right\}⇒b¡Í¦Á$£»¼´¢ÚÎªÕæÃüÌ⣻
ÓÉÏßÃæ´¹Ö±µÄÅж¨¶¨ÀíÖª£º$\left.\begin{array}{l}a¡Íb\\ b?¦Á\end{array}\right\}⇒a¡Í¦Á$²»Ò»¶¨³ÉÁ¢£»¼´¢ÛΪ¼ÙÃüÌ⣻
ÓÉÏßÃæÆ½ÐеÄÐÔÖʶ¨ÀíºÍÏßÃæ´¹Ö±µÄ¶¨Ò壬¿ÉµÃ$\left.\begin{array}{c}a¡Í¦Á\\ b¡Î¦Á\end{array}\right\}⇒b¡Ía$£»¼´¢ÜÎªÕæÃüÌ⣻
$\left.\begin{array}{l}a¡Í¦Á\\ b¡Ía\end{array}\right\}⇒b¡Îa$»òb?¦Á£¬¹Ê¢ÝΪ¼ÙÃüÌ⣻
¹ÊÑ¡£ºD£®

µãÆÀ ±¾ÌâÒÔÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃÎªÔØÌ壬¿¼²éÁ˿ռäÖ±ÏßÓëÆ½ÃæµÄλÖùØÏµ£¬ÄѶÈÖеµ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Èôº¯Êýf£¨x£©=x2+2x+2aÓëg£¨x£©=|x-1|+|x+a|ÓÐÏàͬµÄ×îСֵ£¬Ôò²»µÈʽg£¨x£©¡Ý5µÄ½â¼¯Îª£¨-¡Þ£¬-3]¡È[2£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®º¯Êý$y=\frac{1}{{\sqrt{-{x^2}+x+2}}}$µÄ¶¨ÒåÓòÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬-1£©B£®£¨-1£¬2£©C£®£¨-¡Þ£¬-1£©¡È£¨2£¬+¡Þ£©D£®£¨2£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èôy=f£¨2x-1£©ÊÇÖÜÆÚΪtµÄÖÜÆÚº¯Êý£¬Ôòº¯Êýy=f£¨x£©µÄÒ»¸öÖÜÆÚÊÇ2t£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÉèÈ«¼¯U={£¨x£¬y£©|x¡ÊR£¬y¡ÊR}£¬¼¯ºÏ$M=\left\{£¨x£¬y£©\right|\frac{y-3}{x-2}=1\}£¬P=\{£¨x£¬y£©|y¡Ùx+1\}$£¬P={£¨x£¬y£©|y¡Ùx+1}£¬Ôò∁U£¨M¡ÈP£©={£¨2£¬3£©}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖª¡÷ABCµÄÄÚ½ÇAÂú×ãsin2A=$\frac{1}{3}$£¬ÔòsinA+cosA=£¨¡¡¡¡£©
A£®-$\frac{2\sqrt{3}}{3}$B£®$\frac{2\sqrt{3}}{3}$C£®$\frac{5}{3}$D£®-$\frac{5}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÍÖÔ²¦££º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¹ýµã£¨$\sqrt{3}$£¬$\frac{1}{2}$£©£¬ÇÒÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£®
£¨¢ñ£©ÇóÍÖÔ²¦£·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßy=x+mÓëÍÖÔ²¦£½»ÓÚ²»Í¬Á½µãA£¬B£¬ÈôµãP£¨0£¬1£©Âú×ã|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|£¬ÇóʵÊýmµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èôº¯Êýf£¨x£©=x3-f¡ä£¨2£©x2+3x-5£¬Ôòf¡ä£¨2£©=3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖª¦Ø£¾0£¬$|ϕ|£¼\frac{¦Ð}{2}$£¬Èô$x=\frac{¦Ð}{3}$ºÍ$x=\frac{4¦Ð}{3}$ÊǺ¯Êýf£¨x£©=cos£¨¦Øx+ϕ£©µÄÁ½¸öÏàÁڵļ«Öµµã£¬Ôò¦Õ=£¨¡¡¡¡£©
A£®$\frac{¦Ð}{6}$B£®-$\frac{¦Ð}{6}$C£®$\frac{¦Ð}{3}$D£®$-\frac{¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸