精英家教网 > 高中数学 > 题目详情
2.设全集U={(x,y)|x∈R,y∈R},集合$M=\left\{(x,y)\right|\frac{y-3}{x-2}=1\},P=\{(x,y)|y≠x+1\}$,P={(x,y)|y≠x+1},则∁U(M∪P)={(2,3)}.

分析 分析可得集合M、P的几何意义,集合M为直线y=x+1中除(2,3)之外的所有点,集合P为平面直角坐标系中除直线y=x+1外的所有点;由此可得M∪P,M∪P的补集即可得答案.

解答 解:根据题意,分析可得集合M可变形为M={(x,y)|y=x+1,x≠2},即直线y=x+1中除(2,3)之外的所有点,
N={(x,y)|y≠x+1},为平面直角坐标系中除直线y=x+1外的所有点;
M∪P={(x,y)|x≠2,y≠3)},即平面直角坐标系中除点(2,3)之外的所有点;
所以∁U(M∪P)={(2,3)}
故答案是:{(2,3)}.

点评 本题考查了交、并、补集的混合运算.直接利用交集、并集、全集、补集的定义或运算性质,借助数轴或韦恩图直接解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设A,B分别是双曲线$\frac{x^2}{25}-\frac{y^2}{20}=1$的两渐近线上的动点,且$|\overrightarrow{AB}|=2\sqrt{5}$,设O为坐标原点,动点P满足$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某程序框图如图所示,现输入如下四个函数,则可以输出的函数是(  )
A.f(x)=lg$\frac{x-1}{x+1}$B.f(x)=exC.f(x)=$\frac{1}{{x}^{3}}$D.f(x)=ex-e-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.直三棱柱A1B1C1-ABC,$∠ACB=\frac{π}{2},AC=BC=2,C{C_1}=2\sqrt{2}$,E,F,H为AC,B1C1,BB1的中点,
(1)证明:EF∥平面AA1B1B;
(2)求异面直线EF与C1H所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某市电视台在因特网上征集电视节目的现场参与观众,报名的共有12000人,分别来自4个城区,其中东城区2400人,西城区4600人,南城区3800人,北城区1200人,从中抽取60人参加现场节目,应当如何抽取?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题:①$\left.\begin{array}{l}a⊥α\\ b?α\end{array}\right\}⇒a⊥b$;②$\left.\begin{array}{l}a⊥α\\ a∥b\end{array}\right\}⇒b⊥α$;③$\left.\begin{array}{l}a⊥b\\ b?α\end{array}\right\}⇒a⊥α$;④$\left.\begin{array}{c}a⊥α\\ b∥α\end{array}\right\}⇒b⊥a$;⑤$\left.\begin{array}{l}a⊥α\\ b⊥a\end{array}\right\}⇒b∥a$,其中正确命题的个数是(  )
A.2个B.4个C.5个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知把函数f(x)=$\sqrt{3}$sinxcosx+cos2x的图象向右平移$\frac{π}{12}$个单位,再把横坐标扩大到原来的2倍,再向下平移$\frac{1}{2}$个单位,得到函数g(x),则函数g(x)从原点起与x轴的正半轴,直线x=$\frac{π}{2}$围成的面积为(  )
A.2B.$\frac{π}{2}$C.1D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某厂生产的零件外径ξ~N(10,0.04),今从该厂上、下午生产的零件中各取一件,测得外径分别为10.5cm,9.3cm,则可认为(  )
A.上午生产情况正常,下午生产情况异常
B.上午生产情况异常,下午生产情况正常
C.上、下午生产情况均正常
D.上、下午生产情况均不正常

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=$\frac{2}{3}$+$\frac{1}{x}$(x>0),数列{an}满足a1=1,an=f($\frac{1}{{a}_{n-1}}$),n∈N*,且n≥2.
(1)求数列{an}的通项公式;
(2)对n∈N*,设Sn=$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+$\frac{1}{{a}_{3}{a}_{4}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$,若Sn≤3t恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案