精英家教网 > 高中数学 > 题目详情
12.设函数f(x)=$\frac{2}{3}$+$\frac{1}{x}$(x>0),数列{an}满足a1=1,an=f($\frac{1}{{a}_{n-1}}$),n∈N*,且n≥2.
(1)求数列{an}的通项公式;
(2)对n∈N*,设Sn=$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+$\frac{1}{{a}_{3}{a}_{4}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$,若Sn≤3t恒成立,求实数t的取值范围.

分析 (1)根据解析式化简an=f($\frac{1}{{a}_{n-1}}$),由等差数列的定义证明{an}是等差数列,由通项公式求出an
(2)由(1)求出$\frac{1}{{a}_{n}{a}_{n+1}}$并化简,利用裂项相消法求出Sn,代入Sn≤3t化简,利用分离常数法和恒成立问题,求出实数t的取值范围.

解答 解:(1)由题意知,f(x)=$\frac{2}{3}$+$\frac{1}{x}$(x>0),
∴an=f($\frac{1}{{a}_{n-1}}$)=$\frac{2}{3}+{a}_{n-1}$,则an-an-1=$\frac{2}{3}$,n∈N*,n≥2,
∴数列{an}是以$\frac{2}{3}$公差的等差数列,
又a1=1,所以an=1+(n-1)×$\frac{2}{3}$=$\frac{2n+1}{3}$,n∈N*
(2)由(1)得an=$\frac{2n+1}{3}$,则an+1=$\frac{2n+3}{3}$,
所以$\frac{1}{anan+1}$=$\frac{9}{(2n+1)(2n+3)}$=$\frac{9}{2}$($\frac{1}{2n+1}-\frac{1}{2n+3}$),
∴Sn=$\frac{1}{a1a2}$+$\frac{1}{a2a3}$+$\frac{1}{a3a4}$+…+$\frac{1}{anan+1}$
=$\frac{9}{2}$[($\frac{1}{3}-\frac{1}{5}$)+($\frac{1}{5}-\frac{1}{7}$)+…+($\frac{1}{2n+1}-\frac{1}{2n+3}$)]
=$\frac{9}{2}$($\frac{1}{3}-\frac{1}{2n+3}$)=$\frac{3n}{2n+3}$,n∈N*
∵Sn≤3t恒成立,∴t≥$\frac{n}{2n+3}$恒成立,
∵$\frac{n}{2n+3}$=$\frac{\frac{1}{2}(2n+3)-\frac{3}{2}}{2n+3}$=$\frac{1}{2}-\frac{3}{2(2n+3)}$<$\frac{1}{2}$,
∴$t≥\frac{1}{2}$,即实数t的取值范围是[$\frac{1}{2}$,+∞).

点评 本题考查了等差数列的定义、通项公式,裂项相消法求数列的前n项和,以及恒成立问题的转化,分离常数法的应用,考查化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.设全集U={(x,y)|x∈R,y∈R},集合$M=\left\{(x,y)\right|\frac{y-3}{x-2}=1\},P=\{(x,y)|y≠x+1\}$,P={(x,y)|y≠x+1},则∁U(M∪P)={(2,3)}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设k是一个正整数,${(1+\frac{x}{k})^k}$的展开式中第三项的系数为$\frac{3}{8}$,任取x∈[0,4],y∈[0,16],则点(x,y)满足条件y≤kx的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)是定义在R上的偶函数,且当x≤0时,f(x)=2x+1+l.
(1)求f(1)的解析式;
(2)在所给的坐标系内画出函数f(x)的草图,并求方程2f(x)-m-l=0恰有两个不同实根时实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题中正确的是(  )
A.若a>b,c>d,则ac>bdB.若ac>bc,则a>b
C.若a>b,则$\frac{1}{a}<\frac{1}{b}$D.若a>b,c>d,则a+c>b+d

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知ω>0,$|ϕ|<\frac{π}{2}$,若$x=\frac{π}{3}$和$x=\frac{4π}{3}$是函数f(x)=cos(ωx+ϕ)的两个相邻的极值点,则φ=(  )
A.$\frac{π}{6}$B.-$\frac{π}{6}$C.$\frac{π}{3}$D.$-\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合A={x|1≤x≤a},若集合A中所有整数元素的和为28,则实数a的取值范围是[7,8).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设定义在R上的函数y=f(x)满足f(x)•f(x+2)=12,且f(2017)=2,则f(3)=(  )
A.12B.6C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知抛物线$\left\{{\begin{array}{l}{x=4{t^2}}\\{y=4t}\end{array}}\right.$(t为参数)的焦点为F,则点M(3,m)到F的距离|MF|为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案