分析 设A(x1,y1),B(x2,y2),P(x,y),由$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$,得x=x1+x2=$\frac{\sqrt{5}}{2}$(y1-y2),y=y1+y2=$\frac{2\sqrt{5}}{5}$(x1-x2),由此利用|AB|=2$\sqrt{5}$,能求出点P的轨迹方程.
解答 解:设A(x1,y1),B(x2,y2),P(x,y),
∵动点P满足$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$,∴x=x1+x2,y=y1+y2,
∵A,B分别是双曲线$\frac{x^2}{25}-\frac{y^2}{20}=1$的两渐近线上的动点,
∴y1=$\frac{2\sqrt{5}}{5}$x1,y2=$\frac{2\sqrt{5}}{5}$x2,
∴x=x1+x2=$\frac{\sqrt{5}}{2}$(y1-y2),y=y1+y2=$\frac{2\sqrt{5}}{5}$(x1-x2),
∴|AB|=$\sqrt{(\frac{\sqrt{5}}{2}y)^{2}+(\frac{2}{\sqrt{5}}x)^{2}}$=2$\sqrt{5}$
化简可得P的轨迹方程为$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1
点评 本题考查点的轨迹方程的求法,考查韦达定理、向量知识的运用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 计算50个学生的平均成绩 | B. | 计算50个学生中不及格的人数 | ||
| C. | 计算50个学生中及格的人数 | D. | 计算50个学生的总成绩 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12π | B. | $4\sqrt{3}π$ | C. | $12\sqrt{3}π$ | D. | $\frac{4}{3}\sqrt{3}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{a}$) | B. | ($\frac{1}{a}$,+∞) | C. | (-∞,$\frac{1}{a}$) | D. | (-∞,a) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com