精英家教网 > 高中数学 > 题目详情
已知圆,则下列命题:①圆上的点到的最短距离的最小值为;②圆上有且只有一点到点的距离与到直线的距离相等;③已知,在圆上有且只有一点,使得以为直径的圆与直线相切.真命题的个数为
A.B.C.D.
D

试题分析:已知动圆的圆心的轨迹方程为:,所以动圆构成的轨迹为夹在抛物线和抛物线之间的部分(包括边界),所以①②③都满足题意
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知圆
(Ⅰ)若过定点()的直线与圆相切,求直线的方程;
(Ⅱ)若过定点()且倾斜角为的直线与圆相交于两点,求线段的中点的坐标;
(Ⅲ) 问是否存在斜率为的直线,使被圆截得的弦为,且以为直径的圆经过原点?若存在,请写出求直线的方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆心为点的圆与直线相切.

(1)求圆的标准方程;
(2)对于圆上的任一点,是否存在定点 (不同于原点)使得恒为常数?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C和轴相切,圆心C在直线上,且被直线截得的弦长为,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点为锐角的内切圆圆心,过点作直线的垂线,垂足为,圆与边相切于点.若,求的度数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面内两点(-1,1),(1,3).
(Ⅰ)求过两点的直线方程;
(Ⅱ)求过两点且圆心在轴上的圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C经过A(1,1)、B(2,)两点,且圆心C在直线l:x-y+1=0上,求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知F1,F2分别是椭圆E:+y2=1的左、右焦点,F1,F2关于直线x+y-2=0的对称点是圆C的一条直径的两个端点.
(1)求圆C的方程;
(2)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,内接于圆,直线切圆于点于点.若,则的长为           .

查看答案和解析>>

同步练习册答案