精英家教网 > 高中数学 > 题目详情
8.在△ABC中,∠ACB=90°,CD⊥AB于点D,AD:BD=2:3,则△ACD与△CBD的相似比为$\frac{\sqrt{6}}{3}$.

分析 分别根据直角三角形的性质和相似三角形的性质直接解答即可.

解答 解:∵AD:BD=2:3,
∴设AD=2x,BD=3x,则AB=5x.
∵△ABC中,∠ACB=90°,CD⊥AB于点D
∴△BCD∽△BAC
∴$\frac{AB}{BC}=\frac{BC}{DB}$,
∴BC2=BD•AB=15x2
∴在直角△ABC中,由勾股定理得到:AC2=AB2-BC2=10x2
又∵△ACD∽△CBD,
∴($\frac{AC}{BC}$)2=$\frac{10{x}^{2}}{15{x}^{2}}$=$\frac{2}{3}$,
则该相似三角形的相似比是:$\frac{AC}{BC}$=$\frac{\sqrt{6}}{3}$.
故答案是:$\frac{\sqrt{6}}{3}$.

点评 本题考查的是相似三角形的判定与性质,解此题的关键是要知道直角三角形斜边上的高把这个三角形分得的两个小三角形,与原三角形相似.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,AB是圆柱OO′的一条母线,BC过底面圆心O,D是圆O上一点.已知AB=BC=10,S=2πrh=100π.
(1)求该圆柱的表面积;
(2)将四面体ABCD绕母线AB所在的直线旋转一周,求△ACD的三边在旋转过程中所围成的几何体的体积;
(3)求点B到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.100辆汽车通过某一段公路时,时速的频率分布直方图如图所示,则时速在[50,70)的汽车大约有(  )
A.60辆B.80辆C.70辆D.140辆

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,在直角梯形ABCD中,AB∥CD,∠BAD=90°,且AB=AD=$\frac{1}{2}$CD=2,$\overrightarrow{CB}$=3$\overrightarrow{CM}$,则$\overrightarrow{DM}$•$\overrightarrow{AC}$的值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题中,正确的是(  )
A.|$\overrightarrow{a}$|=|$\overrightarrow{b}$|⇒$\overrightarrow{a}$=$\overrightarrow{b}$B.|$\overrightarrow{a}$|>|$\overrightarrow{b}$|⇒$\overrightarrow{a}$>$\overrightarrow{b}$C.|$\overrightarrow{a}$|=|$\overrightarrow{b}$|⇒$\overrightarrow{a}$∥$\overrightarrow{b}$D.|$\overrightarrow{a}$|=0⇒$\overrightarrow{a}$=$\overrightarrow{0}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设α,β是关于x的方程x2+2x+m=0(m∈R)的两个根,则|α|+|β|的值为$\left\{\begin{array}{l}{2,(0≤m≤1)}\\{2\sqrt{1-m},(m<0)}\end{array}\right.$..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.cos$\frac{5π}{6}$=-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=-x3-x,若实数a,b满足f(a-1)+f(b)=0,则a+b等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1}{2}a{x^2}$+2x,g(x)=lnx.
(1)设函数F(x)=f(x)-g(x),若F(x)在$[\frac{1}{2},+∞)$上单调递增,求a的取值范围;
(2)是否存在实数a>0,使得方程$\frac{g(x)}{x}$=f′(x)-(2a+1)在区间$(\frac{1}{e},e)$内有且只有两个不相等的实数根?若存在,请求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案