精英家教网 > 高中数学 > 题目详情
10.设椭圆C的两个焦点为F1、F2,过点F1的直线与椭圆C交于点M,N,若|MF2|=|F1F2|,且|MF1|=4,|NF1|=3,则椭圆Г的离心率为(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{3}{7}$D.$\frac{5}{7}$

分析 设椭$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),运用椭圆的定义,可得|NF2|=2a-|NF1|=2a-3,|MF2|+|MF1|=2a,即有2c+4=2a,取MF1的中点K,连接KF2,则KF2⊥MN,由勾股定理可得a+c=12,解得a,c,运用离心率公式计算即可得到.

解答 解:设椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),
F1(-c,0),F2(c,0),
|MF2|=|F1F2|=2c,
由椭圆的定义可得|NF2|=2a-|NF1|=2a-3,
|MF2|+|MF1|=2a,即有2c+4=2a,
即a-c=2,①
取MF1的中点K,连接KF2,则KF2⊥MN,
由勾股定理可得|MF2|2-|MK|2=|NF2|2-|NK|2
即为4c2-4=(2a-3)2-25,化简即为a+c=12,②
由①②解得a=7,c=5,
则离心率e=$\frac{c}{a}$=$\frac{5}{7}$.
故选:D.

点评 本题考查椭圆的定义、方程和性质,主要考查椭圆的定义的运用和离心率的求法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.若2×4a-2a×3b+2×9b=2a+3b+1,求2a+3b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=3sin2x+2$\sqrt{3}$sinxcosx+5cos2x.
(1)求函数f(x)的周期和最大值;
(2)已知f(a)=5,求tana的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发阵容有5人组成,要求每个班至少1人,至多2人,则首发方案数为(  )
A.720B.270C.390D.300

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图1在直角三角形ABC中,∠A=90°,AB=2,AC=4,D,E分别是AC,BC边上的中点,M为CD的中点,现将△CDE沿DE折起,使点A在平面CDE内的射影恰好为M.
(I)求AM的长;
(Ⅱ)求面DCE与面BCE夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=alnx-ax-3,a∈R,
(Ⅰ)当a=1时,求f(x)的极值;
(Ⅱ)求函数f(x)的单调区间.
(Ⅲ)若函数f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对任意的t∈[1,2],函数$g(x)={x^3}+{x^2}[{f'(x)+\frac{m}{2}}]$在区间(t,3)上总不是单调函数,求m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知a>0,函数f(x)=$\frac{a}{3}$x3-ax2+x+1,g(x)=$\frac{1-2a}{a}$x+lnx+1
(1)若f(x)在x=x1,x=x2处取得极值,且1<$\frac{{x}_{2}}{{x}_{1}}$≤5,求实数a的取值范围;
(2)求使得f′(x)≥g(ax)恒成立的实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.△ABC中,角A、B、C所对的边分别为a、b、c,sin2A=$\frac{8}{5}$sinA,b=$\sqrt{3}$,$\overrightarrow{m}$=(c-a,b+c),$\overrightarrow{n}$=(a,b-c),
$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求sinA;
(2)求角B与c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.(2x+1)n的展开式中的各项系数和为729,则n的值为(  )
A.5B.6C.7D.8

查看答案和解析>>

同步练习册答案