精英家教网 > 高中数学 > 题目详情
4.已知扇形所在圆的半径为8,弧长为12,则扇形的圆心角为弧度$\frac{3}{2}$.

分析 设这个扇形的圆心角的度数为n,根据弧长公式,求解即可.

解答 解:设这个扇形的圆心角的度数为n,
根据题意得n=$\frac{12}{8}$=$\frac{3}{2}$,
即这个扇形的圆心角为$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 本题考查了弧长公式的应用,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.某同学用计算器产生了两个[0,1]之间的均匀随机数,分别记作x,y,当y<x2时,x>$\frac{1}{2}$的概率是(  )
A.$\frac{7}{24}$B.$\frac{1}{2}$C.$\frac{7}{12}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C对应的边分别是a,b,c且cos2B+3cosB-1=0.
(1)求角B的大小;
(2)若a+c=1,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,已知点A(-1,0),B(1,0),动点C满足条件:△ABC的周长为$2+2\sqrt{2}$,记动点C的轨迹为曲线W.
(1)求W的方程;
(2)设过点B的直线l与曲线W交于M,N两点,如果$|{MN}|=\frac{{4\sqrt{2}}}{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数是正态分布密度函数的是(  )
A.f(x)=$\frac{1}{{\sqrt{2π}σ}}{e^{\frac{{{{(x-r)}^2}}}{2σ}}}$B.f(x)=$\frac{{\sqrt{2π}}}{2π}{e^{-\frac{x^2}{2}}}$
C.f(x)=$\frac{1}{{2\sqrt{2}π}}{e^{\frac{{{{(x-1)}^2}}}{4}}}$D.f(x)=$\frac{1}{{\sqrt{2π}}}{e^{\frac{x^2}{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$,那么|$\overrightarrow{a}$-4$\overrightarrow{b}$|等于(  )
A.2B.$2\sqrt{3}$C.$\sqrt{13}$D.13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.${(\frac{1}{3})^{-2}}×{log_2}\root{3}{4}$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义区间(a,b)、[a,b)、(a,b]、[a,b]的长度均为d=b-a,用[x]表示不超过x的最大整数,例如[3.2]=3,[-2.3]=-3.记{x}=x-[x],设f(x)=[x]•{x},g(x)=x-1,若用d表示不等式f(x)<g(x)解集区间长度,则当0≤x≤3时有(  )
A.d=1B.d=2C.d=3D.d=4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数中,既是偶函数又在(0,+∞)上单调递增的是(  )
A.y=x3B.y=|x|+1C.y=-x2+1D.y=($\frac{1}{2}$)X

查看答案和解析>>

同步练习册答案