精英家教网 > 高中数学 > 题目详情
已知函数
(1)若,试判断并用定义证明函数的单调性;
(2)当时,求证函数存在反函数.
(1)增函数;(2)参考解析

试题分析:(1)当时,.通过函数的单调性的定义可证得函数单调递增.
(2)由,所以将x的区间分为两类即.所以函数.由(1)可得函数是递增函数.应用单调性的定义同样可得函数是递增.根据反函数的定义可得函数存在反函数.
试题解析:(1)判断:若,函数上是增函数.
证明:当时,
上是增函数.2分
在区间上任取,设

所以,即上是增函数.6分
(2)因为,所以8分
时,上是增函数,9分
证明:当时,上是增函数(过程略)11分
在在上也是增函数,当时,上是增函数12分
所以任意一个,均能找到唯一的和它对应,
所以时,存在反函数14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,判断的单调性,并用定义证明;
(2)若对任意,不等式恒成立,求的取值范围;
(3)讨论零点的个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,曲线在点处切线方程为.
(1)求的值;
(2)讨论的单调性,并求的极小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的定义域为.
(1)求函数上的最小值;
(2)对,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于函数).
(1)探索并证明函数的单调性;
(2)是否存在实数使函数为奇函数?若有,求出实数的值,并证明你的结论;若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数)的图象,且点M到边OA距离为
(1)当时,求直路所在的直线方程;
(2)当t为何值时,地块OABC在直路不含泳池那侧的面积取到最大,最大值是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,则小正方形的边长为            时,盒子容积最大?。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在区间(-∞,1]上递减,则a的取值范围为(    )
A.[1,2)
B.[1,2]
C.[1,+∞)
D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义域为(0,+),的导函数,且满足,则不等式的解集是(   )
A.(0,1)B.(1,+)C.(1,2)D.(2,+)

查看答案和解析>>

同步练习册答案