精英家教网 > 高中数学 > 题目详情
3.复数z=$\frac{1}{2}$+$\frac{1}{2}$i(其中i为虚数单位)的虚部是(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$iC.$\frac{1}{2}$D.-$\frac{1}{2}$i

分析 利用复数的运算法则、虚部的定义即可得出.

解答 解:$z=\frac{i}{1+i}=\frac{i(1-i)}{(1+i)(1-i)}=\frac{1+i}{2}=\frac{1}{2}+\frac{1}{2}i$,
则虚部为$\frac{1}{2}$,
故选:C.

点评 本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在△ABC中,已知a,b,c分别是角A,B,C的对边,且满足$\frac{2b+c}{a}$=-$\frac{cosC}{cosA}$.
(Ⅰ)求A的大小;
(Ⅱ)若△ABC的面积为2$\sqrt{3}$,其外接圆半径R=$\frac{2\sqrt{21}}{3}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(  )
A.y=-x2+1B.y=lg|x|C.$y=\frac{1}{x}$D.y=e-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合M={大于0小于1的有理数},
N={小于1050的正整数},
P={定圆C的内接三角形},
Q={所有能被7整除的数},
其中无限集是(  )
A.M、N、PB.M、P、QC.N、P、QD.M、N、Q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=$\left\{\begin{array}{l}{x^{{2^{\;}}}}\\ π\\ 0\end{array}\right.$$\begin{array}{l},{x>0}\\,{x=0}\\,{x<0}\end{array}$,则f[f (-3)]等于(  )
A.0B.πC.π2D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1=2,AC⊥BC,点D是AB的中点.
(1)求证:AC1∥平面 CDB1
(2)求三棱锥的体积${V_{B-{B_1}CD}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知:命题p:″a=1″是当x>0时,x+$\frac{a}{x}$>2的充分必要条件,命题:q:?x0∈R,x02+x0-2>0,则下列命题正确的是(  )
A.命题p∧q是真命题B.命题¬p∧q是真命题
C.命题p∧(¬q)是真命题D.命题(¬p)∧(¬q)是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知△ABC中,内角A,B,C的对边分别为a,b,c,已知$\frac{2a+b}{c}$=$\frac{cos(A+C)}{cosC}$
(1)求角C的大小;
(2)求$\frac{a+b}{c}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆$\frac{x^2}{4}$+$\frac{y^2}{2}$=1,F1,F2为其左.右焦点,直线l与椭圆相交于A、B两点,
(1)线段AB的中点为(1,$\frac{1}{2}$),求直线l的方程;
(2)直线l过点F1,三角形ABF2内切圆面积最大时,求直线l的方程.

查看答案和解析>>

同步练习册答案