精英家教网 > 高中数学 > 题目详情
12.已知△ABC中,内角A,B,C的对边分别为a,b,c,已知$\frac{2a+b}{c}$=$\frac{cos(A+C)}{cosC}$
(1)求角C的大小;
(2)求$\frac{a+b}{c}$的取值范围.

分析 (1)由$\frac{2a+b}{c}$=$\frac{cos(A+C)}{cosC}$,利用正弦定理可得:$\frac{2sinA+sinB}{sinC}$=$\frac{-cosB}{cosC}$,化简利用和差公式即可得出.
(2)由正弦定理可得:$\frac{a+b}{c}$=$\frac{sinA+sinB}{sinC}$=$\frac{2\sqrt{3}}{3}$sin$(A+\frac{π}{3})$,由A∈$(0,\frac{π}{3})$,可得sin$(A+\frac{π}{3})$∈$(\frac{\sqrt{3}}{2},1]$,即可得出.

解答 解:(1)∵$\frac{2a+b}{c}$=$\frac{cos(A+C)}{cosC}$,利用正弦定理可得:$\frac{2sinA+sinB}{sinC}$=$\frac{-cosB}{cosC}$,化为2sinAcosC+sin(B+C)=0,
∴2sinAcosC+sinA=0,又sinA≠0,解得cosC=-$\frac{1}{2}$,C∈(0,π),解得C=$\frac{2π}{3}$.
(2)由正弦定理可得:$\frac{a+b}{c}$=$\frac{sinA+sinB}{sinC}$=$\frac{2\sqrt{3}}{3}$[sinA+sin$(\frac{π}{3}-A)$]=$\frac{2\sqrt{3}}{3}$$(\frac{1}{2}sinA+\frac{\sqrt{3}}{2}cosA)$=$\frac{2\sqrt{3}}{3}$sin$(A+\frac{π}{3})$,
∵A∈$(0,\frac{π}{3})$,∴$(A+\frac{π}{3})$∈$(\frac{π}{3},\frac{2π}{3})$,∴sin$(A+\frac{π}{3})$∈$(\frac{\sqrt{3}}{2},1]$,
∴$\frac{a+b}{c}$=$\frac{2\sqrt{3}}{3}$sin$(A+\frac{π}{3})$∈$(1,\frac{{2\sqrt{3}}}{3}]$.

点评 本题考查了正弦定理、和差公式、诱导公式、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=a-$\frac{b}{x}$-lnx(a,b∈R).
(Ⅰ)若函数f(x)在[1,e]上单调递增(e为自然对数的底数),求b的取值范围;
(Ⅱ)若b=1,是否存在实数a使得f(x)恰有两个不同零点,若存在,求出a的取值集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数z=$\frac{1}{2}$+$\frac{1}{2}$i(其中i为虚数单位)的虚部是(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$iC.$\frac{1}{2}$D.-$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知定义在R上的偶函数f(x)在[0,+∞)上单调递增,且f(1)=0,则不等式f(x-2)≤0的解集是{x|x≥3或x≤1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知命题p和命题q中有且仅有一个真命题,则下列命题中一定为假命题的是(  )
A.p∨qB.¬p∨qC.¬p∧¬qD.p∨¬q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.直线l过点(1,-2),且与直线2x+3y-1=0垂直,则l的方程是(  )
A.2x+3y+4=0B.2x+3y-8=0C.3x-2y-7=0D.3x-2y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在数列{an}中,a1=2,an+1=1-an(n∈N*),Sn为数列的前n项和,则S2015-2S2016+S2017的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.抛物线y2=2x的焦点到直线x-$\sqrt{3}$y=0的距离是(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{4}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题的否定为假命题的是(  )
A.?x∈R,x2+2x+2≤0B.任意一个四边形的四个顶点共圆
C.?x∈R,sin2x+cos2x=1D.所有能被3整除的整数都是奇数

查看答案和解析>>

同步练习册答案