精英家教网 > 高中数学 > 题目详情
6.已知a∈R,则“a2+4a-5>0”是“|a+2|>3”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据一元二次不等式和绝对值不等式的解法,求出对应的不等式的解集,结合充分条件和必要条件的定义进行判断即可.

解答 解:由a2+4a-5>0得a>1或a<-5,
由|a+2|>3得a+2>3或a+2<-3,
得a>1或a<-5,
即“a2+4a-5>0”是“|a+2|>3”的充要条件,
故选:C

点评 本题主要考查充分条件和必要条件的判断,结合不等式的解法求出不等式的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.现有编号为A,B,C,D的四本书,将这4本书平均分给甲、乙两位同学,则A,B两本书不被同一位同学分到的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{12}=1({a>0})$,以原点为圆心,双曲线的实轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形的ABCD的面积为$2\sqrt{3}a$,则a的值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$或$2\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为促进义务教育的均衡发展,各地实行免试就近入学政策,某地区随机调查了50人,他们年龄的频数分布及赞同“就近入学”人数如表:
年龄[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
频数510151055
赞同4512821
(1)在该样本中随机抽取3人,求至少2人支持“就近入学”的概率.
(2)若对年龄在[5,15),[35,45)的被调查人中各随机选取2两人进行调查,记选中的4人支持“就近入学”人数为X,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆的两个焦点为${F_1}(-\sqrt{5},0)$,${F_2}(\sqrt{5},0)$是椭圆上一点,若$\overrightarrow{M{F_1}}•\overrightarrow{M{F_2}}=0$,$|\overrightarrow{M{F_1}}|•|\overrightarrow{M{F_2}}|=8$.
(1)求椭圆的方程;
(2)直线l过右焦点${F_2}(\sqrt{5},0)$(不与x轴重合)且与椭圆相交于不同的两点A,B,在x轴上是否存在一个定点P(x0,0),使得$\overrightarrow{PA}•\overrightarrow{PB}$的值为定值?若存在,写出P点的坐标(不必求出定值);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,内角A、B、C的对边分别是a,b,c,若λsinA=sinB+sinC(λ∈R).
(Ⅰ)当λ=3,且b=c时,求cosA的值;
(Ⅱ)当A=60°时,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若$\frac{m+i}{1+i}$=ni,则实数m=-1,实数n=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数图象不是轴对称图形的是(  )
A.$y=\frac{1}{x}$B.y=cosx,x∈[0,2π]C.$y=\sqrt{x}$D.y=lg|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知命题p:“$\frac{x}{y}$>1”,命题q:“x>y”,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案