精英家教网 > 高中数学 > 题目详情
15.下列函数图象不是轴对称图形的是(  )
A.$y=\frac{1}{x}$B.y=cosx,x∈[0,2π]C.$y=\sqrt{x}$D.y=lg|x|

分析 根据常见函数的图象即可判断

解答 解:对于A,y=$\frac{1}{x}$为轴对称图形,其对称轴y=x,或y=-x,
对于B:y=cosx在x∈[0,2π]为轴对称图形,其对称轴x=π,
对于C:y=$\sqrt{x}$不是轴对称图形,
对于D:y=lg|x|为轴对称图形,其对称轴x=0,
故选:C.

点评 本题考查了函数的图象和性质,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知复数z(1-2i)=2+i,则z=(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a∈R,则“a2+4a-5>0”是“|a+2|>3”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,a,b,c分别是角A,B,C的对边,且a+c=2b,则角B的取值范围为$(0,\frac{π}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知x,y满足$\left\{\begin{array}{l}x≥0\\ y≥0\\ x+y≤4\end{array}\right.$则x2-y的最大值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b垂直”是“平面α和平面β垂直”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.春节期间,受烟花爆竹集中燃放影响,我国多数城市空气中PM2.5浓度快速上升,特别是在大气扩散条件不利的情况下,空气质量在短时间内会迅速恶化.2017年除夕18时和初一2时,国家环保部门对8个城市空气中PM2.5浓度监测的数据如表(单位:微克/立方米).
除夕18时PM2.5浓度初一2时PM2.5浓度
北京75647
天津66400
石家庄89375
廊坊102399
太原46115
上海1617
南京3544
杭州13139
(Ⅰ)求这8个城市除夕18时空气中PM2.5浓度的平均值;
(Ⅱ)环保部门发现:除夕18时到初一2时空气中PM2.5浓度上升不超过100的城市都是“禁止燃放烟花爆竹“的城市,浓度上升超过100的城市都未禁止燃放烟花爆竹.从以上8个城市中随机选取3个城市组织专家进行调研,记选到“禁止燃放烟花爆竹”的城市个数为X,求随机变量y的分布列和数学期望;
(Ⅲ) 记2017年除夕18时和初一2时以上8个城市空气中PM2.5浓度的方差分别为s12和s22,比较s12和s22的大小关系(只需写出结果).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(α)=$\frac{{sin(α-\frac{π}{2})cos(\frac{3π}{2}+α)tan(2π-α)}}{tan(α+π)sin(α+π)}$.
(1)化简f(α);
(2)若f(α)•f(α+$\frac{π}{2}$)=-$\frac{1}{8}$,且$\frac{5π}{4}$≤α≤$\frac{3π}{2}$,求f(α)+f(α+$\frac{π}{2}$)的值;
(3)若f(α+$\frac{π}{2}$)=2f(α),求f(α)•f(α+$\frac{π}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图所示的韦恩图中,A、B是非空集合,定义A*B表示阴影部分的集合.若x,y∈R,A={x|y=$\sqrt{2x-{x}^{2}}$},B={y|y=3x,x>0}.则A*B为(  )
A.{x|0<x<2}B.{x|1<x≤2}C.{x|0≤x≤1或x≥2}D.{x|0≤x≤1或x>2}

查看答案和解析>>

同步练习册答案