精英家教网 > 高中数学 > 题目详情
如图,棱锥V-ABC中,VO⊥平面ABC,O∈CD,VA=VB,AD=BD.求证:
(1)AB⊥平面VDC;
(2)AB⊥CD.
考点:直线与平面垂直的判定,直线与平面垂直的性质
专题:证明题,空间位置关系与距离
分析:(1)连接VD,由VA=VB,AD=BD可得VD⊥AB,又由VO⊥平面ABC,得VO⊥AB,从而AB⊥平面VDO,由C在直线DO上,即可得证;
(2)由(1)得AB⊥平面VDC,从而由CD?平面VDC,可得AB⊥CD.
解答: 证明:(1)连接VD,从而∵VA=VB,AD=BD
∴VD⊥AB
∵VO⊥平面ABC,∴VO⊥AB
∴AB⊥平面VDO,
∵C在直线DO上,
∴AB⊥平面VDC;
(2)由(1)得AB⊥平面VDC;
∵CD?平面VDC
∴AB⊥CD.
点评:本题主要考察了直线与平面垂直的判定,直线与平面垂直的性质,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(Ⅰ)已知等差数列{an}中,a1+a3+a5=21,求该数列的前5项的和S5的值;
(Ⅱ)已知等比数列{an}中,a1=2,an=64,q=2,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=x2+ln(x+a),其中a为常数.
(1)讨论函数g(x)的单调性;
(2)若g(x)存在两个极值点x1,x2,求证:无论实数a取什么值都有
g(x1)+g(x2)
2
>g(
x1+x2
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=3,an+1=an+ln(1+
1
n
)(n∈N*)
则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某山区的两个工厂A、B直线距离14km,工厂C距A、B直线距离都是25km,E为线段AB的中点,在线段CE上选建变电站D,并从点D处铺设到工厂A,B,C的输电线DA,DB,DC.
(1)变电站D建在何处,可使铺设的总输电线长最短?
(2)因山区复杂条件,希望铺设的三段输电线中最远一段的长度为最小,那么变电站D建在何处?

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间直角坐标系中,平面的方程为Ax+By+Cz+D=0,现有平面α的方程为x+y+z-2=0,则坐标原点到平面α的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂计划生产甲、乙两种产品,这两种产品都需要两种原料.生产甲产品1工时需要A种原料3kg,B种原料1kg;生产乙产品1工时需要A种原料2kg,B种原料2kg.现有A种原料1200kg,B种原料800kg.如果生产甲产品每工时的平均利润是30元,生产乙产品每工时的平均利润是40元,问甲、乙两种产品各生产多少工时能使利润的总额最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为 (  )
A、直角三角形B、锐角三角形
C、钝角三角形D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

4个人排成一排,甲不能站在两边,则不同的排法种数有(  )种.
A、12B、16C、8D、20

查看答案和解析>>

同步练习册答案