精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}+2x-\frac{5}{4},(x≤1)\\{log_{\frac{1}{3}}}x-\frac{1}{4}.(x>1)\end{array}$,g(x)=|A-2|•sinx(x∈R),若对任意的x1、x2∈R,都有f(x1)≤g(x2),则实数A的取值范围为(  )
A.$(-∞,\frac{9}{4}]$B.$[\frac{7}{4},+∞)$C.$[\frac{7}{4},\frac{9}{4}]$D.$(-∞,\frac{7}{4}]∪$$[\frac{9}{4},+∞)$

分析 对任意的x1、x2∈R,都有f(x1)≤g(x2)?f(x)max≤g(x)min,分别求出最值即可得出.

解答 解:对任意的x1、x2∈R,都有f(x1)≤g(x2)?f(x)max≤g(x)min
注意到$f{(x)_{max}}=f(1)=-\frac{1}{4}$,又g(x)=|A-2|sinx≥-|A-2|,
故$-|A-2|≥-\frac{1}{4}⇒|A-2|≤\frac{1}{4}⇒\frac{7}{4}≤A≤\frac{9}{4}$.
故选:C.

点评 本题考查了函数的单调性、等价转化方法、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为阳马,将四个面都为直角三角形的四面体称为鳖臑,某几何体τ的三视图如图所示,将该几何体分别沿棱和表面的对角线截开可得到到一个鳖臑和一个阳马,设V表示体积,则Vτ的外接球:V阳马:V鳖臑=(  )
A.9π:2:1B.3$\sqrt{3}$π:3:1C.3$\sqrt{3}$π:2:1D.3$\sqrt{3}$π:1:1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x+2|-|2x-a|,(a∈R).
(Ⅰ)当a=3时,解不等式f(x)>0;
(Ⅱ)当x∈[0,+∞)时,f(x)<3恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=alnx+bx2,其中实数a,b为常数.
(Ⅰ)已知曲线y=f(x)在x=1处取得极值$\frac{1}{2}$.
①求a,b的值;
②证明:f(x)>$\frac{x}{{e}^{x}}$;
(Ⅱ)当b=$\frac{1}{2}$时,若方程f(x)=(a+1)x恰有两个不同的解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合A={-1,0,1},B={x|x2-2x-3≤0},则A∩B=(  )
A.{-1,0,1}B.{0}C.(-1,1)D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$与抛物线y2=2px(p>0)共焦点F2,抛物线上的点M到y轴的距离等于|MF2|-1,且椭圆与抛物线的交点Q满足|QF2|=$\frac{5}{2}$.
(Ⅰ)求抛物线的方程和椭圆的方程;
(Ⅱ)过抛物线上的点P作抛物线的切线y=kx+m交椭圆于A、B两点,求此切线在x轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆Γ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$经过点$E({\sqrt{3},\frac{1}{2}})$,且离心率为$\frac{{\sqrt{3}}}{2}$.
(1)求椭圆Γ的方程;
(2)直线l与圆O:x2+y2=b2相切于点M,且与椭圆Γ相交于不同的两点A,B,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\sqrt{3}$sin(2017x)+cos(2017x)的最大值为A,若存在实数x1,x2使得对任意实数x总有f(x1)≤f(x)≤f(x2)成立,则A|x1-x2|的最小值为(  )
A.$\frac{π}{2017}$B.$\frac{2π}{2017}$C.$\frac{4π}{2017}$D.$\frac{π}{4034}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知直线l:x+my-3=0与圆C:x2+y2=4相切,则m=$±\frac{\sqrt{5}}{2}$.

查看答案和解析>>

同步练习册答案