精英家教网 > 高中数学 > 题目详情
5.在《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为阳马,将四个面都为直角三角形的四面体称为鳖臑,某几何体τ的三视图如图所示,将该几何体分别沿棱和表面的对角线截开可得到到一个鳖臑和一个阳马,设V表示体积,则Vτ的外接球:V阳马:V鳖臑=(  )
A.9π:2:1B.3$\sqrt{3}$π:3:1C.3$\sqrt{3}$π:2:1D.3$\sqrt{3}$π:1:1

分析 首先还原几何体为三棱柱,根据数学文化得到一个鳖臑和一个阳马几何体以及计算体积.

解答 解:由已知得到几何体是以边长为2的等腰三角形为底面,高为2的三棱柱,
其外接球的体积为$\frac{4}{3}π(\sqrt{3})^{3}$=4$\sqrt{3}π$,由题意,得到一个鳖臑的体积为$\frac{1}{3}×\frac{1}{2}×2×2×2=\frac{4}{3}$,一个阳马的体积为$\frac{1}{3}×2×2×2=\frac{8}{3}$,
所以Vτ的外接球:V阳马:V鳖臑=4$\sqrt{3}π$:$\frac{8}{3}$:$\frac{4}{3}$=3$\sqrt{3}π$:2:1;
故选C.

点评 本题考查了数学文化以及由几何体的三视图求相关几何体的体积;关键是正确理解数学文化,正确还原几何体.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.按如图所示的程序框图,若输入a=110101,则输出的b=(  )
A.53B.51C.49D.47

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和Sn=2(an-1),等差数列{bn}满足b1=a1,b4=a3,其中n∈N*.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若Cn=(-1)nbnbn+1,求数列{cn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD丄底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD,BC=$\frac{1}{2}$AD
(I)求证:平面PQB⊥平面PAD
(Ⅱ)若三棱锥A-BMQ的体积是四棱锥P-ABCD体积的$\frac{1}{6}$,设PM=tMC,试确定t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}为等差数列,a1=sinθ(-$\frac{π}{2}$≤θ≤$\frac{π}{2}$),a5=a3+1,且其前10项和S10=$\frac{55}{2}$.
(1)求θ的值;
(2)求数列bn=an+($\frac{1}{2}$)${\;}^{2{a}_{n}}$的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设f(x)=ex-e-x-x.
(1)求f(x)的单调区间;
(2)已知g(x)=x2f(x)+(x+1)[f(x)+(1-a)x]+(1-a)x3.若对所有x≥0,都有g(x)≥0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,三棱锥P-ABC中,底面ABC为等边三角形,O为△ABC的中心,平面PBC⊥平面ABC,PB=PC=BC=$\sqrt{3}$,D为AP上一点,且AD=2DP.
(I)求证:DO∥平面PBC;
(II)求证:AC⊥平面OBD;
(III)设M为PC的中点,求二面角M-BD-O的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=alnx-(a+b)x+x2(a,b∈R).
(I)若a=2,b=1,求函数f(x)在x=1处的切线方程;
(II) 若f(x)在x=1处取得极值,讨论函数f(x)的单调性;
(III)当a=1时,设函数φ(x)=f(x)-x2有两个零点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}+2x-\frac{5}{4},(x≤1)\\{log_{\frac{1}{3}}}x-\frac{1}{4}.(x>1)\end{array}$,g(x)=|A-2|•sinx(x∈R),若对任意的x1、x2∈R,都有f(x1)≤g(x2),则实数A的取值范围为(  )
A.$(-∞,\frac{9}{4}]$B.$[\frac{7}{4},+∞)$C.$[\frac{7}{4},\frac{9}{4}]$D.$(-∞,\frac{7}{4}]∪$$[\frac{9}{4},+∞)$

查看答案和解析>>

同步练习册答案