精英家教网 > 高中数学 > 题目详情
10.设集合A={-1,0,1},B={x|x2-2x-3≤0},则A∩B=(  )
A.{-1,0,1}B.{0}C.(-1,1)D.(-1,3)

分析 根据题意和交集的运算直接求出A∩B.

解答 解:集合A={-1,0,1},B={x|x2-2x-3≤0}=[-1,3],则A∩B={-1,0,1},
故选:A.

点评 本题考查交集及其运算,以及不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知数列{an}为等差数列,a1=sinθ(-$\frac{π}{2}$≤θ≤$\frac{π}{2}$),a5=a3+1,且其前10项和S10=$\frac{55}{2}$.
(1)求θ的值;
(2)求数列bn=an+($\frac{1}{2}$)${\;}^{2{a}_{n}}$的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow{b}$=(cosθ,$\frac{1}{2}$),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则2cos($\frac{3π}{2}$+2θ)+$\frac{1}{2}$cos2θ的值为(  )
A.$\frac{13}{10}$B.$\frac{19}{10}$C.$\frac{3}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图所示的程序框图,运行相应的程序,则输出S的值为15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.复数z的共轭复数为$\overline z$,若$\frac{1-i}{z•\overline z+i}$为纯虚数,则|z|=(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}+2x-\frac{5}{4},(x≤1)\\{log_{\frac{1}{3}}}x-\frac{1}{4}.(x>1)\end{array}$,g(x)=|A-2|•sinx(x∈R),若对任意的x1、x2∈R,都有f(x1)≤g(x2),则实数A的取值范围为(  )
A.$(-∞,\frac{9}{4}]$B.$[\frac{7}{4},+∞)$C.$[\frac{7}{4},\frac{9}{4}]$D.$(-∞,\frac{7}{4}]∪$$[\frac{9}{4},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知i为虚数单位,z(2i-1)=1+i,则复数z的共轭复数为(  )
A.$-\frac{1}{5}-\frac{3}{5}i$B.$\frac{1}{5}+\frac{3}{5}i$C.$-\frac{1}{5}+\frac{3}{5}i$D.$\frac{1}{5}-\frac{3}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$内有一点M(2,1),过M的两条直线l1,l2分别与椭圆E交于A,C和B,D两点,且满足$\overrightarrow{AM}=λ\overrightarrow{MC},\overrightarrow{BM}=λ\overrightarrow{MD}$(其中λ>0,且λ≠1),若λ变化时,AB的斜率总为$-\frac{1}{2}$,则椭圆E的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{5}-1}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知等差数列{an}中,a2=6,前7项和S7=84,则a6=18.

查看答案和解析>>

同步练习册答案