精英家教网 > 高中数学 > 题目详情
19.已知直线l:x+my-3=0与圆C:x2+y2=4相切,则m=$±\frac{\sqrt{5}}{2}$.

分析 由直线l:x+my-3=0与圆C:x2+y2=4相切,得到圆心O(0,0)到直线l的距离d=r,由此能求出结果.

解答 解:∵直线l:x+my-3=0与圆C:x2+y2=4相切,
∴圆心O(0,0)到直线l的距离d=r,
即$\frac{|3|}{\sqrt{1+{m}^{2}}}$=2,
解得m=$±\frac{\sqrt{5}}{2}$.
故答案为:±$\frac{\sqrt{5}}{2}$.

点评 本题考查实数值的求法,考查圆、直线方程、直线与圆相切等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}+2x-\frac{5}{4},(x≤1)\\{log_{\frac{1}{3}}}x-\frac{1}{4}.(x>1)\end{array}$,g(x)=|A-2|•sinx(x∈R),若对任意的x1、x2∈R,都有f(x1)≤g(x2),则实数A的取值范围为(  )
A.$(-∞,\frac{9}{4}]$B.$[\frac{7}{4},+∞)$C.$[\frac{7}{4},\frac{9}{4}]$D.$(-∞,\frac{7}{4}]∪$$[\frac{9}{4},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知A,B,C,D四点共面,BC=2,AB2+AC2=20,$\overrightarrow{CD}=3\overrightarrow{CA}$,则|$\overrightarrow{BD}$|的最大值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$夹角为60°,且|$\overrightarrow{a}$|=2,|$\overrightarrow{a}$-2$\overrightarrow{b}$|=2$\sqrt{7}$,则|$\overrightarrow{b}$|=(  )
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知等差数列{an}中,a2=6,前7项和S7=84,则a6=18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知抛物线C:y2=4x的焦点为F,过F的直线l交抛物线C于A、B两点,弦AB的中点M到抛物线C的准线的距离为5,则直线l的斜率为(  )
A.$±\frac{{\sqrt{2}}}{2}$B.±1C.$±\frac{{\sqrt{6}}}{3}$D.$±\frac{{\sqrt{6}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-$\frac{1}{2}$ax2+(1-a)x+1,a∈R.
( I)求函数f(x)的单调区间;
(Ⅱ)令g(x)=f(x)+ax-$\frac{13}{2}$,若a=2,正实数x1,x2满足g(x1)+g(x2)+x1x2=0,求x1+x2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$\frac{π}{2}<α<π$,sinα+cosα=$\frac{1}{5}$,则$\frac{2}{cosα-sinα}$(  )
A.-$\frac{5}{7}$B.$-\frac{7}{5}$C.$\frac{10}{7}$D.$-\frac{10}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在梯形ABCD中,AB∥CD,∠BAD=$\frac{π}{2}$,M为BC中点,且AB=AD=2CD=2,则$\overrightarrow{AM}$•$\overrightarrow{BD}$的值为-1.

查看答案和解析>>

同步练习册答案