¸ø³öÒÔÏÂËĸö½áÂÛ£º

¢ÙÈô¹ØÓÚxµÄ·½³Ìx£­£«k£½0ÔÚx¡Ê(0£¬1)ûÓÐʵÊý¸ù£¬ÔòkµÄÈ¡Öµ·¶Î§ÊÇk¡Ý2£®

¢ÚÇúÏßy£½1£«(|x|¡Ü2)ÓëÖ±Ïßy£½k(x£­2)£«4ÓÐÁ½¸ö½»µãʱ£¬ÊµÊýkµÄÈ¡Öµ·¶Î§ÊÇ()£®

¢ÛÒÑÖªµãP(a£¬b)ÓëµãQ(1£¬0)ÔÚÖ±Ïß2x£­3y£«1£½0Á½²à£¬Ôò3a£­2b£¾1£®

¢ÜÈô½«º¯Êýf(x)£½sin(2x£­)µÄͼÏñÏòÓÒƽÒÆ(£¾0)¸öµ¥Î»ºó±äΪżº¯Êý£¬ÔòµÄ×îСֵÊÇ£®

ÆäÖÐÕýÈ·µÄ½áÂÛÊÇ£º________(°ÑËùÓÐÕýÈ·µÄÅж϶¼ÌîÉÏ)£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÒÔÏÂËĸö½áÂÛ£º
£¨1£©º¯Êýf(x)=
x-1
x+1
µÄ¶Ô³ÆÖÐÐÄÊÇ£¨-1£¬-1£©£»
£¨2£©Èô¹ØÓÚxµÄ·½³Ìx-
1
x
+k=0
ÔÚx¡Ê£¨0£¬1£©Ã»ÓÐʵÊý¸ù£¬ÔòkµÄÈ¡Öµ·¶Î§ÊÇk¡Ý2
£¨3£©ÒÑÖªµãP£¨a£¬b£©ÓëµãQ£¨1£¬0£©ÔÚÖ±Ïß2x-3y+1=0Á½²à£¬Ôò3b-2a£¾1£»
£¨4£©Èô½«º¯Êýf(x)=sin(2x-
¦Ð
3
)
µÄͼÏóÏòÓÒƽÒÆ?£¨?£¾0£©¸öµ¥Î»ºó±äΪżº¯Êý£¬Ôò?µÄ×îСֵÊÇ
¦Ð
12
ÆäÖÐÕýÈ·µÄ½áÂÛÊÇ£º
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¡÷ABCÖУ¬½ÇA¡¢B¡¢CµÄ¶Ô±ß·Ö±ðΪa¡¢b¡¢c£¬AHΪBC±ßÉϵĸߣ¬¸ø³öÒÔÏÂËĸö½áÂÛ£º
¢Ù
AH
BC
=0
£»¢Ú
AB
AH
=c•sinB
£»¢Û
BC
•(
AC
-
AB
)
=b2+c2-2bc•cosA£»¢Ü
AH
•(
AB
+
BC
)=
AH
AB
£®ÆäÖÐËùÓÐÕýÈ·½áÂÛµÄÐòºÅÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¡÷ABCÖУ¬½ÇA¡¢B¡¢CËù¶Ô±ß·Ö±ðΪa¡¢b¡¢c£¬AHΪBC±ßÉϵĸߣ¬¸ø³öÒÔÏÂËĸö½áÂÛ£º
¢ÙÈôa=1£¬b=
3
£¬Ôò¡°A=
¦Ð
6
¡±ÊÇ¡°B=
¦Ð
3
¡±³ÉÁ¢µÄ³ä·Ö²»±ØÒªÌõ¼þ£»
¢Ú
AH
•(
AC
-
AB
)=0
£»
¢Û
BC
•(
AB
-
AC
)=b2+c2-2bccosA
£»
¢Ü
AH
•(
AB
+
BC
)=
AH
AB
£¬
ÆäÖÐËùÓÐÕæÃüÌâµÄÐòºÅÊÇ
¢Ú¢Ü
¢Ú¢Ü
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©£¬g£¨x£©µÄ¶¨ÒåÓò¶¼ÊÇD£¬ÓÖh£¨x£©=f£¨x£©+g£¨x£©£®Èôf£¨x£©£¬g£¨x£©µÄ×î´óÖµ·Ö±ðÊÇM¡¢N£¬×îСֵ·Ö±ðÊÇm¡¢n£¬¸ø³öÒÔÏÂËĸö½áÂÛ£º
£¨1£©h£¨x£©µÄ×î´óÖµÊÇM+N£»
£¨2£©h£¨x£©µÄ×îСֵÊÇm+n£»
£¨3£©h£¨x£©µÄÖµÓòÊÇ{y|m+n¡Üy¡ÜM+N}£»
£¨4£©h£¨x£©µÄÖµÓòÊÇ{y|m+n¡Üy¡ÜM+N}µÄÒ»¸ö×Ó¼¯£®
ÔòÕýÈ·½áÂ۵ĸöÊýÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÒÔÏÂËĸö½áÂÛ£º
¢Ùº¯Êýf(x)=
x-1
2x+1
µÄ¶Ô³ÆÖÐÐÄÊÇ(-
1
2
£¬-
1
2
)
£»
¢ÚÈô²»µÈʽmx2-mx+1£¾0¶ÔÈÎÒâµÄx¡ÊR¶¼³ÉÁ¢£¬Ôò0£¼m£¼4£»
¢ÛÒÑÖªµãP£¨a£¬b£©ÓëµãQ£¨l£¬0£©ÔÚÖ±Ïß2x-3y+1=0Á½²à£¬Ôò3b-2a£¾1£»
¢ÜÈô½«º¯Êýf(x)=sin(2x-
¦Ð
3
)
µÄͼÏóÏòÓÒƽÒƦգ¨¦Õ£¾0£©¸öµ¥Î»ºó±äΪżº¯Êý£¬Ôò¦ÕµÄ×îСֵÊÇ
¦Ð
12
£®
ÆäÖÐÕýÈ·µÄ½áÂÛÊÇ£º
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸