精英家教网 > 高中数学 > 题目详情
15.若sinα=$\frac{{\sqrt{5}}}{5}$,sinβ=$\frac{{\sqrt{10}}}{10}$,其α,β为锐角,求cos(α+β)的值.

分析 由已知利用同角三角函数基本关系式可求cosα,cosβ的值,利用两角和的余弦函数公式即可计算求值.

解答 (本题满分6分)
解:∵sinα=$\frac{{\sqrt{5}}}{5}$,sinβ=$\frac{{\sqrt{10}}}{10}$,
∴cos$α=\sqrt{1-si{n}^{2}α}$=$\frac{2\sqrt{5}}{5}$,cos$β=\sqrt{1-si{n}^{2}β}$=$\frac{3\sqrt{10}}{10}$,
∴cos(α+β)=cosαcosβ-sinαsinβ=$\frac{2\sqrt{5}}{5}$×$\frac{3\sqrt{10}}{10}$-$\frac{{\sqrt{5}}}{5}$×$\frac{{\sqrt{10}}}{10}$=$\frac{\sqrt{2}}{2}$.
故cos(α+β)的值为:$\frac{\sqrt{2}}{2}$.

点评 本题主要考查了同角三角函数基本关系式,两角和的余弦函数公式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知i为虚数单位,若$\frac{5}{i}$+a=1+bi(a,b∈R),则a+b等于(  )
A.-4B.6C.-6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.用0,1,2,3,4,5,6组成没有重复数字的4位数.
(1)这样的4位数有多少个?
(2)这样的4位数是奇数的有多少个?偶数有多少个?
(3)这样的4位数被5整除的有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.S=1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…+$\frac{1}{1+2+…+2016}$=$\frac{4032}{2017}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.方程sinx+$\sqrt{3}$cosx=1的解为$\left\{{x|x=kπ+{{({-1})}^k}\frac{π}{6}-\frac{π}{3},k∈Z}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设随机变量X~B(8,$\frac{3}{4}$),则D(X)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知矩形的两相邻边长为tan$\frac{θ}{2}$和1+cosθ,且对于任何实数x,f(x)=sinθ•x2+$\root{4}{3}$x+cosθ≥0恒成立,则此矩形的面积(  )
A.有最大值1,无最小值B.有最大值$\frac{\sqrt{3}}{2}$,最小值$\frac{1}{2}$
C.有最小值$\frac{\sqrt{3}}{2}$,无最大值D.有最大值1,最小值$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC的三个内角A,B,C所对的边分别是a,b,c,B是钝角,且$\sqrt{3}$a=2bsinA.
(1)求B的大小;
(2)若△ABC的面积为$\frac{{15\sqrt{3}}}{4}$,且b=7,求a+c的值;
(3)若b=6,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,cos2B>cos2A是A>B的(  )
A.充分条件B.充分不必要条件C.充要条件D.必要不充分条件

查看答案和解析>>

同步练习册答案