分析 (1)利用正弦定理可得$\sqrt{3}sinA=2sinBsinA$,结合sinA≠0,可求sinB,结合B是钝角,即可得解B的值.
(2)由已知利用三角形面积公式可求ac=15,利用余弦定理即可得解a+c=8.
(3)由余弦定理,基本不等式可得36=a2+c2+ac≥2ac+ac,解得ac≤12,利用三角形面积公式即可得解.
解答 (本题满分为16分)
解:(1)∵$\sqrt{3}a=2bsinA$,
∴利用正弦定理可得:$\sqrt{3}sinA=2sinBsinA$,又sinA≠0,
∴可得:$sinB=\frac{{\sqrt{3}}}{2}$,
∵B是钝角,
∴$B=\frac{2}{3}π$.…(4分)
(2)∵$\frac{1}{2}acsinB=\frac{{15\sqrt{3}}}{4}$.
∴可得:ac=15,
∵b2=a2+c2-2accosB,
∴49=(a+c)2-ac,
∴a+c=8.…(10分)
(3)∵b2=a2+c2-2accosB,
∴36=a2+c2+ac≥2ac+ac,
∴ac≤12,
∴$S=\frac{1}{2}acsinB=\frac{{\sqrt{3}}}{4}ac≤3\sqrt{3}$,(当且仅当$a=c=2\sqrt{3}$时面积取最大值$3\sqrt{3}$). …(16分)
点评 本题主要考查了正弦定理,三角形面积公式,余弦定理,基本不等式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 若直线a和b共面,直线b和c共面,则a和c共面 | |
| B. | 若直线a与平面α不垂直,则a与平面α内的所有直线都不垂直 | |
| C. | 若异面直线a、b不垂直,则过a的任何平面与b都不垂直 | |
| D. | 若直线a与平面α不平行,则a与平面α内的所有直线都不平行 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com