精英家教网 > 高中数学 > 题目详情
4.已知△ABC的三个内角A,B,C所对的边分别是a,b,c,B是钝角,且$\sqrt{3}$a=2bsinA.
(1)求B的大小;
(2)若△ABC的面积为$\frac{{15\sqrt{3}}}{4}$,且b=7,求a+c的值;
(3)若b=6,求△ABC面积的最大值.

分析 (1)利用正弦定理可得$\sqrt{3}sinA=2sinBsinA$,结合sinA≠0,可求sinB,结合B是钝角,即可得解B的值.
(2)由已知利用三角形面积公式可求ac=15,利用余弦定理即可得解a+c=8.
(3)由余弦定理,基本不等式可得36=a2+c2+ac≥2ac+ac,解得ac≤12,利用三角形面积公式即可得解.

解答 (本题满分为16分)
解:(1)∵$\sqrt{3}a=2bsinA$,
∴利用正弦定理可得:$\sqrt{3}sinA=2sinBsinA$,又sinA≠0,
∴可得:$sinB=\frac{{\sqrt{3}}}{2}$,
∵B是钝角,
∴$B=\frac{2}{3}π$.…(4分)
(2)∵$\frac{1}{2}acsinB=\frac{{15\sqrt{3}}}{4}$.
∴可得:ac=15,
∵b2=a2+c2-2accosB,
∴49=(a+c)2-ac,
∴a+c=8.…(10分)
(3)∵b2=a2+c2-2accosB,
∴36=a2+c2+ac≥2ac+ac,
∴ac≤12,
∴$S=\frac{1}{2}acsinB=\frac{{\sqrt{3}}}{4}ac≤3\sqrt{3}$,(当且仅当$a=c=2\sqrt{3}$时面积取最大值$3\sqrt{3}$). …(16分)

点评 本题主要考查了正弦定理,三角形面积公式,余弦定理,基本不等式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.给出下列命题,其中正确的命题为(  )
A.若直线a和b共面,直线b和c共面,则a和c共面
B.若直线a与平面α不垂直,则a与平面α内的所有直线都不垂直
C.若异面直线a、b不垂直,则过a的任何平面与b都不垂直
D.若直线a与平面α不平行,则a与平面α内的所有直线都不平行

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若sinα=$\frac{{\sqrt{5}}}{5}$,sinβ=$\frac{{\sqrt{10}}}{10}$,其α,β为锐角,求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=2sin(ωx+φ)(ω>0,且|φ|<$\frac{π}{2}$)的部分图象如图所示,则f($\frac{π}{2}$)的值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的通项公式为an=n2-2an(n∈N*),且当n≠4时,an>a4,则实数a的取值范围是$(\frac{7}{2},\frac{9}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.袋中装有6只乒乓球,其中4只白的,2只红的,从中任取2只球:
(1)均为白球的概率是多少?
(2)取出的球一只白球一只红球的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.△ABC中.设$\overrightarrow{CB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\sqrt{3}$,$\overrightarrow{a}$•$\overrightarrow{b}$=-$\sqrt{3}$,则c=$\sqrt{7-2\sqrt{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=log0.2(x2+2x-3).
(1)求f(x)的定义域;
(2)若f(x)≥log0.2(x2-4),求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)已知0<x1<x2,求证:$\frac{{x}_{1}+1}{{x}_{2}+1}>\frac{{x}_{1}}{{x}_{2}}$;
(2)已知f(x)=lg(x+1)-$\frac{1}{2}$log3x,求证:f(x)在定义域内是单调递减函数;
(3)在(2)的条件下,求集合M={n|f(n2-214n-1998)≥0,n∈Z}的子集个数.

查看答案和解析>>

同步练习册答案