精英家教网 > 高中数学 > 题目详情
6.已知双曲线C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线与圆x2+(y-2)2=1相交,则双曲线C的离心率e的取值范围是(1,$\frac{2\sqrt{3}}{3}$).

分析 先根据双曲线方程求得双曲线的渐近线,进而利用圆心到渐近线的距离小于半径求得a和b的关系,进而利用c2=a2+b2求得a和c的关系,则双曲线的离心率可求.

解答 解:∵双曲线渐近线为ax±by=0,与圆x2+(y-2)2=1相交,
∴圆心到渐近线的距离小于半径,即$\frac{2b}{\sqrt{{a}^{2}+{b}^{2}}}$<1,
∴3b2<a2
∴c2=a2+b2<$\frac{4}{3}$a2
∴e=$\frac{c}{a}$<$\frac{2\sqrt{3}}{3}$
∵e>1
∴1<e<$\frac{2\sqrt{3}}{3}$.
故答案为:(1,$\frac{2\sqrt{3}}{3}$).

点评 本题主要考查了双曲线的简单性质,直线与圆的位置关系,点到直线的距离公式等.考查了学生数形结合的思想的运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=|log2|x-3||,且关于x的方程[f(x)]2+af(x)+b=0有6个不同的实数解,若最小实数解为-5,则a+b的值为(  )
A.-3B.-2C.0D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l1的方程为mx+2y-1=0,直线l2的方程为mx+(m-4)y+5=0,
(1)若l1⊥l2,求实数m的值;
(2)若l1∥l2,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{{x}^{2}}{1+x}$+$\frac{1}{x}$,x∈(0,+∞).
(1)求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)设函数g(x)=f(x)-$\frac{1}{x}$-alnx(a>0),证明:函数g(x)有唯一一个极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知复数z=$\frac{{{i^{2016}}}}{3+2i}$,则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=x3+3ax2+bx+a2在x=-1时有极值0,求常数a,b的值.并求函数的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,a=42,A=45°,B=60°,解三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,在边长为60cm的正方形的四个角除去边长相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长(  )时,箱子容积最大.
A.10cmB.20cmC.30cmD.40cm

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.把半径为2的圆分成相等的四弧,再将四弧围成星形放在半径为2的圆内,现在往该圆内任投一点,此点落在星形内的概率为$\frac{4}{π}-1$.

查看答案和解析>>

同步练习册答案