精英家教网 > 高中数学 > 题目详情

【题目】石雕工艺承载着几千年的中国石雕文化,随着科技的发展,机器雕刻产品越来越多.某石雕厂计划利用一个圆柱形的石材(如图1)雕刻制作一件工艺品(如图2),该作品的上方是一个球体,下方是一个正四棱柱,经测量,圆柱形石材的底面半径米,高米,制作要求如下:首先需将石材切割为体积相等的两部分(分别称为圆柱A和圆柱B),要求切面与原石材的上、下底面平行(不考虑损耗),然后将圆柱A切割打磨为一个球体,将圆柱B切割打磨为一个长方体,则加工打磨后所得工艺品的体积的最大值为________立方米.

【答案】

【解析】

要求加工打磨后所得工艺品的体积的最大值,只需上方的球与下方的长方体的体积同时取得最大值即可.

因为圆柱A和圆柱B的体积一样大,所以它们的高一样,即米,

要使工艺品的体积最大,则上方的球与下方的长方体的体积同时取得最大值,

设由圆柱A打磨的球体半径为,则,即,所以

时,球的体积取得最大值,此时球体体积

设下方的长方体的底面边长分别为

要使长方体的体积最大,长方体的高与圆柱B的高相等,此时其体积

因为长方体为圆柱B的内接长方体,即长方体的底面是圆柱底面的内接长方形,

所以长方形的对角线长等于圆柱底面的直径,即

由基本不等式可得,即,当且仅当时取等号,

所以长方体体积的最大值为

所以所得工艺品的体积的最大值为(立方米).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中平面,且

1)求证:

2)在线段上,是否存在一点,使得二面角的大小为,如果存在,求与平面所成的角的正弦值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,分别为的中点是由绕直线旋转得到,连结.

1)证明:平面

2)若,棱上是否存在一点,使得?若存在,确定点 的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)

A.3699B.3474C.3402D.3339

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为1的正方体ABCDA1B1C1D1中,ACBD=OE是线段B1C(含端点)上的一动点,则

OEBD1

OEA1C1D

③三棱锥A1BDE的体积不是定值;

OEA1C1所成的最大角为90°

上述命题中正确的个数是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的坐标方程为,若直线与曲线相切.

(1)求曲线的极坐标方程;

(2)在曲线上取两点于原点构成,且满足,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):

锻炼人次

空气质量等级

[0200]

(200400]

(400600]

1(优)

2

16

25

2(良)

5

10

12

3(轻度污染)

6

7

8

4(中度污染)

7

2

0

1)分别估计该市一天的空气质量等级为1234的概率;

2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);

3)若某天的空气质量等级为12,则称这天空气质量好;若某天的空气质量等级为34,则称这天空气质量不好.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?

人次≤400

人次>400

空气质量好

空气质量不好

附:

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1时,讨论函数的单调性;

2 时,对任意,有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数在定义域上的最大值为,求实数的值;

2)设函数,当时,对任意的恒成立,求满足条件的实数的最小整数值.

查看答案和解析>>

同步练习册答案