精英家教网 > 高中数学 > 题目详情
(2009•宁波模拟)已知△ABC的三个顶点均在椭圆4x2+5y2=80上,且点A在y轴的正半轴上.
(Ⅰ)若△ABC的重心是椭圆的右焦点F2,试求直线BC的方程;
(Ⅱ)若∠A=90°,试证直线BC恒过定点.
分析:(Ⅰ)设B(x1,y1),C(x2,y2)进而根据椭圆方程求得b和c,进而可求得A,F1的坐标,根据三角形的重心的性质可分别求得x1+x2和y1+y2,把B,C点代入椭圆方程后两式相减,进而求得直线BC的斜率,设出直线BC的方程,把B,C点坐标代入两式相加求得b,则直线BC方程可得.
(Ⅱ)由AB⊥AC,得
AB
AC
=x1x2+y1y2-4(y1+y2)+16=0(1).设直线BC方程为y=kx+b代入4x2+5y2=80,利用韦达定理结合(1)式,即可得直线BC过定点.
解答:解:(Ⅰ)设B(x1,y1),C(x2,y2).
整理椭圆方程得
x2
20
+
y2
16
=1,∴短轴b=4,a=2
5

∴c=
20-16
=2,
则A(0,4 ),F1(2,0)
0+x1+x2
3
=2,x1+x2=6
同理y1+y2=-4
x12
20
+
y12
16
=1
x22
20
+
y22
16
=1

两式相减可得4(x1+x2)+5(y1+y2)×k=0,
∴k=
6
5
(k为BC斜率)
令BC直线为:y=
6
5
x+b,则y1+y2=
6
5
(x1+x2)+2b
∴b=-
28
5

∴BC直线方程为:y=
6
5
x-
28
5

即5y-6x+28=0.…(7分)
(Ⅱ)由AB⊥AC,得
AB
AC
=x1x2+y1y2-4(y1+y2)+16=0  (1)
设直线BC方程为y=kx+b代入4x2+5y2=80,得(4+5k2)x2+10bkx+5b2-80=0
x1+x2=
-10kb
4+5k2
x1x2=
5b2-80
4+5k2

∴y1+y2=k(x1+x2)+2b=
8k
4+5k2
,y1y2=k2x1x2+kb(x1+x2)+b2=
4b2-80k2
4+5k2

代入(1)式得,
9b2-32b-16
4+5k2
=0

解得b=4(舍)或b=-
4
9

故直线BC过定点(0,-
4
9
).
点评:本题主要考查了直线与圆锥曲线的综合问题.直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等,突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•宁波模拟)设A={x|
x-1x+1
<0},B={x||x-b|<a)
,若“a=1”是“A∩B≠Φ”的充分条件,则实数b的取值范围是
(-2,2)
(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•宁波模拟)sin155°cos35°-cos25°cos235°=
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•宁波模拟)若数列{an}的通项公式为an=
n(n-1)•…•2•1
10n
,则{an}
为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•宁波模拟)已直方程tan2x-
4
3
3
tanx+1=0
在x∈[0,nπ),(n∈N*)内所有根的和记为an
(1)写出an的表达式:(不要求严格的证明)  
(2)求Sn=a1+a2+…+an
(3)设bn=(kn-5)π,若对任何n∈N*都有an≥bn,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•宁波模拟)已知f(x)是定义在R上的函数,f(1)=1,且?x1,x2∈R,总有f(x1+x2)=f(x1)+f(x2)+1恒成立.
(Ⅰ)求证:f(x)+1是奇函数;
(Ⅱ)对?n∈N*,有an=
1
f(n)
bn=f(
1
2n+1
)+1
,求:Sn=a1a2+a2a3+…+anan+1Tn=
b1
a1
+
b2
a2
+…+
bn
an

(Ⅲ)求F(n)=an+1+an+2+…+a2n(n≥2,n∈N)的最小值.

查看答案和解析>>

同步练习册答案