【题目】如图,在三棱锥
中,已知
是正三角形,平面
平面
,
,
为
的中点,
在棱
上,且
.
![]()
(1)求证:
平面
;
(2)若
为
的中点,问
上是否存在一点
,使
平面
?若存在,说明点
的位置;若不存在,试说明理由.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=lg(﹣x2+5x﹣6)的定义域为A,函数g(x)
,x∈(0,m)的值域为B.
(1)当m=2时,求A∩B;
(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某部门在同一上班高峰时段对甲、乙两座地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟).将统计数据按
,
,
,
分组,制成频率分布直方图:
![]()
(1)求
的值;
(2)记
表示事件“在上班高峰时段某乘客在甲站乘车等待时间少于20分钟”,试估计
的概率;
(3)假设同组中的每个数据用该组区间左端点值来估计,记在上班高峰时段甲、乙两站各抽取的50名乘客乘车的平均等待时间分别为
,
,求
的值,并直接写出
与
的大小关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着科技的发展,网购已经逐渐融入了人们的生活.在家里面不用出门就可以买到自己想要的东西,在网上付款即可,两三天就会送到自己的家门口,如果近的话当天买当天就能送到,或者第二天就能送到,所以网购是非常方便的购物方式.某公司组织统计了近五年来该公司网购的人数
(单位:人)与时间
(单位:年)的数据,列表如下:
| 1 | 2 | 3 | 4 | 5 |
| 24 | 27 | 41 | 64 | 79 |
(1)依据表中给出的数据,是否可用线性回归模型拟合
与
的关系,请计算相关系数
并加以说明(计算结果精确到0.01).(若
,则线性相关程度很高,可用线性回归模型拟合)
附:相关系数公式
,参考数据
.
(2)建立
关于
的回归方程,并预测第六年该公司的网购人数(计算结果精确到整数).
(参考公式:
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)
x2﹣xlnx,g(x)=(m﹣x)lnx+(1﹣m)x(m<0).
(1)讨论函数f′(x)的单调性;
(2)求函数F(x)=f(x)﹣g(x)在区间[1,+∞)上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
,点
为其右焦点,过点
的直线与椭圆
相交于点
,
.
![]()
(1)当点
在椭圆
上运动时,求线段
的中点
的轨迹方程;
(2)如图1,点
的坐标为
,若点
是点
关于
轴的对称点,求证:点
,
,
共线;
(3)如图2,点
是直线
上的任意一点,设直线
,
,
的斜率分别为
,
,
,求证
,
,
成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】曲线C是平面内与两个定点
,
的距离之积等于常数
的点的轨迹,给出下列三个结论:
①曲线过坐标原点;②曲线关于坐标原点对称;
③曲线关于横轴对称;④曲线关于纵轴对称;
⑤曲线关于
对称;⑥若点P在曲线上,则
的面积不大于
.
其中,所有正确结论的序号是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com