精英家教网 > 高中数学 > 题目详情

【题目】某部门在同一上班高峰时段对甲、乙两座地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟).将统计数据按分组,制成频率分布直方图:

1)求的值;

2)记表示事件“在上班高峰时段某乘客在甲站乘车等待时间少于20分钟”,试估计的概率;

3)假设同组中的每个数据用该组区间左端点值来估计,记在上班高峰时段甲、乙两站各抽取的50名乘客乘车的平均等待时间分别为,,求的值,并直接写出的大小关系.

【答案】(1);(2;(3.

【解析】

1)利用频率分布直方图小长方形面积之和为1确定a的值即可;

2)由题意,利用频率近似概率值,计算事件A的概率即可;

3)结合直方图中的数据首先求得的值,然后比较的大小关系即可.

1)因为

所以.

2)由题意知,该乘客在甲站平均等待时间少于20分钟的频率为:

,故的估计值为

3 .

由直方图知:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,的中点.

(I)若上的一点,且与直线垂直,求的值;

(Ⅱ)在(I)的条件下,设异面直线所成的角为45°,求直线与平面成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蔬果经销商销售某种蔬果,售价为每公斤25元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每公斤10元处理完.根据以往的销售情况,得到如图所示的频率分布直方图:

(1)根据频率分布直方图计算该种蔬果日需求量的平均数(同一组中的数据用该组区间中点值代表);

(2)该经销商某天购进了250公斤这种蔬果,假设当天的需求量为公斤,利润为元.求关于的函数关系式,并结合频率分布直方图估计利润不小于1750元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABCA1B1C1中,ACBCAA13ACBC,点M在线段AB上.

1)若MAB中点,证明AC1∥平面B1CM

2)当BM时,求直线C1A1与平面B1MC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在无穷数列中,是给定的正整数,

(Ⅰ)若,写出的值;

(Ⅱ)证明:数列中存在值为的项;

(Ⅲ)证明:若互质,则数列中必有无穷多项为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着“北京八分钟”在韩国平昌冬奥会惊艳亮相,冬奥会正式进入了北京周期,全社会对冬奥会的热情空前高涨.

(1)为迎接冬奥会,某社区积极推动冬奥会项目在社区青少年中的普及,并统计了近五年来本社区冬奥项目青少年爱好者的人数(单位:人)与时间(单位:年),列表如下:

依据表格给出的数据,是否可用线性回归模型拟合的关系,请计算相关系数并加以说明(计算结果精确到0.01).

(若,则线性相关程度很高,可用线性回归模型拟合)

附:相关系数公式,参考数据.

(2)某冰雪运动用品专营店为吸引广大冰雪爱好者,特推出两种促销方案.

方案一:每满600元可减100元;

方案二:金额超过600元可抽奖三次,每次中奖的概率同为 ,且每次抽奖互不影响,中奖1次打9折,中奖2次打8折,中奖3次打7折. v

两位顾客都购买了1050元的产品,并且都选择第二种优惠方案,求至少有一名顾客比选择方案一更优惠的概率;

②如果你打算购买1000元的冰雪运动用品,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,已知是正三角形,平面平面的中点,在棱上,且.

1)求证:平面

2)若的中点,问上是否存在一点,使平面?若存在,说明点的位置;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校“凌云杯”篮球队的成员来自学校高一、高二共10个班的12位同学,其中高一(3)班、高二(3)各出2人,其余班级各出1人,这12人中要选6人为主力队员,则这6人来自不同的班级的概率为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了纪念“一带一路”倡议提出五周年,某城市举办了一场知识竞赛,为了了解市民对“一带一路”知识的掌握情况,从回收的有效答卷中按青年组和老年组各随机抽取了40份答卷,发现成绩都在内,现将成绩按区间,,,进行分组,绘制成如下的频率分布直方图.

青年组

中老年组

(1)利用直方图估计青年组的中位数和老年组的平均数;

(2)从青年组,的分数段中,按分层抽样的方法随机抽取5份答卷,再从中选出3份答卷对应的市民参加政府组织的座谈会,求选出的3位市民中有2位来自分数段的概率.

查看答案和解析>>

同步练习册答案