精英家教网 > 高中数学 > 题目详情

【题目】如图,直三棱柱ABCA1B1C1中,ACBCAA13ACBC,点M在线段AB上.

1)若MAB中点,证明AC1∥平面B1CM

2)当BM时,求直线C1A1与平面B1MC所成角的正弦值.

【答案】(1)证明见解析(2)

【解析】

1)连结BC1,交B1CE,连结ME.利用三角形的中位线证得,由此证得平面.

2)以为原点建立空间直角坐标系,通过直线的方向向量和平面的法向量,计算出线面角的正弦值.

1)证明:连结BC1,交B1CE,连结ME

∵侧面BB1C1C为矩形,

EBC1的中点,又MAB的中点,

MEAC1

ME平面B1CMAC1平面B1CM

AC1∥平面B1CM

2)以C为原点,以CBCACC1为坐标轴建立空间直角坐标系Cxyz如图所示:

B1033),A1303),A300),B030),C1003),AB3,∴BMBA

033),120),300).

设平面B1MC的法向量为xyz),则0

,令z12,﹣11).

cos

故当BM时,直线C1A1与平面B1MC所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位: )和年利润(单位:千元)的影响,对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.

表中,.

(1)根据散点图判断, 哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立关于的回归方程;

(3)已知这种产品的年利润的关系为.根据(2)的结果要求:年宣传费为何值时,年利润最大?

附:对于一组数据 ,…, 其回归直线的斜率和截距的最小二乘估计分别为 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为:为参数),直线与曲线分别交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)求线段的长和的积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,且上焦点为,过的动直线与椭圆相交于两点.设点,记的斜率分别为

1)求椭圆的方程;

2)如果直线的斜率等于,求的值;

3)探索是否为定值?如果是,求出该定值;如果不是,求出的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=lg(﹣x2+5x6)的定义域为A,函数gxx∈(0m)的值域为B

1)当m2时,求AB

2)若xAxB的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD为矩形,点A、E、B、F共面,且均为等腰直角三角形,且90°.

(Ⅰ)若平面ABCD平面AEBF,证明平面BCF平面ADF;

(Ⅱ)问在线段EC上是否存在一点G,使得BG∥平面CDF,若存在,求出此时三棱锥G-ABE与三棱锥G-ADF的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某部门在同一上班高峰时段对甲、乙两座地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟).将统计数据按分组,制成频率分布直方图:

1)求的值;

2)记表示事件“在上班高峰时段某乘客在甲站乘车等待时间少于20分钟”,试估计的概率;

3)假设同组中的每个数据用该组区间左端点值来估计,记在上班高峰时段甲、乙两站各抽取的50名乘客乘车的平均等待时间分别为,,求的值,并直接写出的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着科技的发展,网购已经逐渐融入了人们的生活.在家里面不用出门就可以买到自己想要的东西,在网上付款即可,两三天就会送到自己的家门口,如果近的话当天买当天就能送到,或者第二天就能送到,所以网购是非常方便的购物方式.某公司组织统计了近五年来该公司网购的人数(单位:人)与时间(单位:年)的数据,列表如下:

1

2

3

4

5

24

27

41

64

79

(1)依据表中给出的数据,是否可用线性回归模型拟合的关系,请计算相关系数并加以说明(计算结果精确到0.01).(若,则线性相关程度很高,可用线性回归模型拟合)

附:相关系数公式 ,参考数据.

(2)建立关于的回归方程,并预测第六年该公司的网购人数(计算结果精确到整数).

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方形中,点分别为边的中点,将沿所在直线进行翻折,将沿所在直线进行翻折,在翻折的过程中,

①点与点在某一位置可能重合;②点与点的最大距离为

③直线与直线可能垂直; ④直线与直线可能垂直.

以上说法正确的个数为( )

A. 0B. 1C. 2D. 3

查看答案和解析>>

同步练习册答案