【题目】如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1=3,AC⊥BC,点M在线段AB上.
![]()
(1)若M是AB中点,证明AC1∥平面B1CM;
(2)当BM
时,求直线C1A1与平面B1MC所成角的正弦值.
【答案】(1)证明见解析(2)![]()
【解析】
(1)连结BC1,交B1C于E,连结ME.利用三角形的中位线证得
,由此证得
平面
.
(2)以
为原点建立空间直角坐标系,通过直线
的方向向量和平面
的法向量,计算出线面角的正弦值.
(1)证明:连结BC1,交B1C于E,连结ME.
∵侧面BB1C1C为矩形,
∴E为BC1的中点,又M是AB的中点,
∴ME∥AC1.
又ME平面B1CM,AC1平面B1CM,
∴AC1∥平面B1CM.
(2)以C为原点,以CB,CA,CC1为坐标轴建立空间直角坐标系C﹣xyz如图所示:
则B1(0,3,3),A1(3,0,3),A(3,0,0),B(0,3,0),C1(0,0,3),AB=3
,∴BM
BA.
∴
(0,3,3),
(1,2,0),
(3,0,0).
设平面B1MC的法向量为
(x,y,z),则
0,
,
∴
,令z=1得
(2,﹣1,1).
∴cos
,
.
故当BM
时,直线C1A1与平面B1MC所成角的正弦值为
.
![]()
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费
(单位:千元)对年销售量
(单位:
)和年利润
(单位:千元)的影响,对近8年的年宣传费
和年销售量
数据作了初步处理,得到下面的散点图及一些统计量的值.
![]()
![]()
表中
,
.
(1)根据散点图判断,
与
哪一个适宜作为年销售量
关于年宣传费
的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立
关于
的回归方程;
(3)已知这种产品的年利润
与
、
的关系为
.根据(2)的结果要求:年宣传费
为何值时,年利润最大?
附:对于一组数据
,
,…,
其回归直线
的斜率和截距的最小二乘估计分别为
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系中,以原点为极点,
轴的正半轴为极轴建立极坐标系,已知曲线
:
,过点
的直线
的参数方程为:
(
为参数),直线
与曲线
分别交于
、
两点.
(1)写出曲线
的直角坐标方程和直线
的普通方程;
(2)求线段
的长和
的积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,且上焦点为
,过
的动直线
与椭圆
相交于
、
两点.设点
,记
、
的斜率分别为
和
.
(1)求椭圆
的方程;
(2)如果直线
的斜率等于
,求
的值;
(3)探索
是否为定值?如果是,求出该定值;如果不是,求出
的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=lg(﹣x2+5x﹣6)的定义域为A,函数g(x)
,x∈(0,m)的值域为B.
(1)当m=2时,求A∩B;
(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,ABCD为矩形,点A、E、B、F共面,且
和
均为等腰直角三角形,且
90°.
![]()
(Ⅰ)若平面ABCD
平面AEBF,证明平面BCF
平面ADF;
(Ⅱ)问在线段EC上是否存在一点G,使得BG∥平面CDF,若存在,求出此时三棱锥G-ABE与三棱锥G-ADF的体积之比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某部门在同一上班高峰时段对甲、乙两座地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟).将统计数据按
,
,
,
分组,制成频率分布直方图:
![]()
(1)求
的值;
(2)记
表示事件“在上班高峰时段某乘客在甲站乘车等待时间少于20分钟”,试估计
的概率;
(3)假设同组中的每个数据用该组区间左端点值来估计,记在上班高峰时段甲、乙两站各抽取的50名乘客乘车的平均等待时间分别为
,
,求
的值,并直接写出
与
的大小关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着科技的发展,网购已经逐渐融入了人们的生活.在家里面不用出门就可以买到自己想要的东西,在网上付款即可,两三天就会送到自己的家门口,如果近的话当天买当天就能送到,或者第二天就能送到,所以网购是非常方便的购物方式.某公司组织统计了近五年来该公司网购的人数
(单位:人)与时间
(单位:年)的数据,列表如下:
| 1 | 2 | 3 | 4 | 5 |
| 24 | 27 | 41 | 64 | 79 |
(1)依据表中给出的数据,是否可用线性回归模型拟合
与
的关系,请计算相关系数
并加以说明(计算结果精确到0.01).(若
,则线性相关程度很高,可用线性回归模型拟合)
附:相关系数公式
,参考数据
.
(2)建立
关于
的回归方程,并预测第六年该公司的网购人数(计算结果精确到整数).
(参考公式:
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在正方形
中,点
,
分别为边
,
的中点,将
沿
所在直线进行翻折,将
沿
所在直线进行翻折,在翻折的过程中,
①点
与点
在某一位置可能重合;②点
与点
的最大距离为
;
③直线
与直线
可能垂直; ④直线
与直线
可能垂直.
以上说法正确的个数为( )
![]()
A. 0B. 1C. 2D. 3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com