精英家教网 > 高中数学 > 题目详情
函数,的零点个数为
A.3B.2C.1D.0
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
按照某学者的理论,假设一个人生产某产品单件成本为元,如果他卖出该产品的单价为元,则他的满意度为;如果他买进该产品的单价为元,则他的满意度为.如果一个人对两种交易(卖出或买进)的满意度分别为,则他对这两种交易的综合满意度为.
现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为元和元,甲买进A与卖出B的综合满意度为,乙卖出A与买进B的综合满意度为.
(1)求关于的表达式;当时,求证:=
(2)设,当分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知二次函数
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)问是否存在常数t(t≥0),当x∈[t,10]时,f(x)的最大值与最小值之差为12-t。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一自来水厂拟建一座平面图形为矩形、面积为200平方米的净水处理池,该池的深度为1米,池的四周内壁建造单价为每平方米400元,池底建造单价为每平方米60元,在该水池长边的正中间设置一个隔层,将水池分成左右两个小水池,该隔层建造单价为每平方米100元,池壁厚度忽略不计.
(1)净水池的长度设计为多少米时,可使总造价最低?
(2)如长宽都不能超过14.5米,那么此净水池的长为多少时,可使总造价最低?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)

如图,有两条相交成的直路,交点是,甲、乙分别在上,起初甲离O点3 km,乙离O点1 km,后甲沿方向用2 km/h的速度,乙沿方向用4km/h的速度同时步行. 设t小时后甲在上点A处,乙在上点B处.
(Ⅰ)求t=1.5时,甲、乙两人之间的距离;
(Ⅱ)求t=2时,甲、乙两人之间的距离;
(Ⅲ) 当t为何值时,甲、乙两人之间的距离最短?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分l2分)
已知是非零实数,如果函数在区间上有零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题10分)上海“世博会”举办时间为2010年5月1日~10月31日.陕西馆以“人文长安之旅”为主题,以“昔日皇家园林”华清池为原型,塑造“人文陕西、山水秦岭”的新形象.为宣传陕西,要设计如图的一张矩形广告,该广告含有大小相等的左中右三个矩形栏目,这三栏的面积之和为,四周空白的宽度为,栏与栏之间的中缝空白的宽度为,怎样确定广告矩形栏目高与宽的尺寸(单位:),能使整个矩形广告面积最小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知表示不超过x的最大整数,如,若是方程的实数根,则(   )
A.B. 
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某化工厂准备对某一化工产品进行技术改良,现决定优选加工温度,试验范围定为60~81℃,精确度要求±1℃。现在技术员准备用分数法进行优选,则最多需要经过         次试验才能找到最佳温度。

查看答案和解析>>

同步练习册答案