分析 (1)利用诱导公式对f(a)进行化简;
(2)代入(1)中的函数关系式进行求值即可.
解答 解:(1)f(a)=$\frac{sin(π-α)cos(π+α)cos(\frac{3π}{2}+α)}{cos(3π-α)sin(3π+α)}$
=$\frac{sinα•(-cosα)•(-sinα)}{-cosα•(-sinα)}$
=sinα,
即f(a)=sinα;
(2)由(1)知,f(a)=sinα.
则f(-$\frac{23π}{6}$)=sin(-$\frac{23π}{6}$)=sin(-4π+$\frac{π}{6}$)=sin$\frac{π}{6}$=$\frac{1}{2}$,即f(-$\frac{23π}{6}$)=$\frac{1}{2}$.
点评 本题考查了三角函数的化简求值,诱导公式的应用,考查计算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1或3 | B. | 1 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\stackrel{∧}{y}$=0.4x+2.3 | B. | $\stackrel{∧}{y}$=2x-2.4 | C. | $\stackrel{∧}{y}$=-2x+9.5 | D. | $\stackrel{∧}{y}$=-0.4x+4.4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com