精英家教网 > 高中数学 > 题目详情
已知点Pn(an,bn)在直线l:y=2x+1上,P1为直线l与y轴的交点,等差数列{an}的公差为1(n∈N*).
(1)求数列{an}、{bn}的通项公式;
(2)设cn=
1
n|P1Pn|
(n≥2)
,求
lim
n→∞
(c2+c3+…+cn)
的值;
(3)若dn=2dn-1+an-1(n≥2),且d1=1,求证:数列{dn+n}为等比数列,并求{dn}的通项公式.
考点:数列的极限,数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)由于点Pn(an,bn)在直线l:y=2x+1上,P1为直线l与y轴的交点,可得bn=2an+1,a1=0,利用等差数列的通项公式可得an,即可得出bn
(2)由(1)可得an-a1=n-1,bn-b1=2n-1-1=2n-2,利用两点之间的距离公式可得|P1Pn|=
(an-a1)2+(bn-b1)2
=
5
(n-1)
(n≥2).因此cn=
1
n|P1Pn|
=
1
5
n•(n-1)
=
1
5
(
1
n-1
-
1
n
)
,利用“裂项求和”及其极限的运算法则即可得出.
(3)n≥2,dn=2dn-1+an-1,=2dn-1+n-2,变形为dn+n=2(dn-1+n-1),即可证明.
解答: (1)解:∵点Pn(an,bn)在直线l:y=2x+1上,P1为直线l与y轴的交点,
∴bn=2an+1,a1=0,
∵等差数列{an}的公差为1(n∈N*),
∴an=0+(n-1)=n-1.
bn=2(n-1)+1=2n-1.
(2)解:由(1)可得an-a1=n-1,bn-b1=2n-1-1=2n-2,
∴|P1Pn|=
(an-a1)2+(bn-b1)2
=
(n-1)2+4(n-1)2
=
5
(n-1)
(n≥2).
∴cn=
1
n|P1Pn|
=
1
5
n•(n-1)
=
1
5
(
1
n-1
-
1
n
)

∴c2+c3+…+cn=
1
5
[(1-
1
2
)+(
1
2
-
1
3
)+
…+(
1
n-1
-
1
n
)]
=
1
5
(1-
1
n
)

lim
n→∞
(c2+c3+…+cn)
=
lim
n→∞
1
5
(1-
1
n
)
=
5
5

(3)证明:n≥2,dn=2dn-1+an-1,=2dn-1+n-2,
∴dn+n=2(dn-1+n-1),
∴数列{dn+n}为等比数列,
首项为d1+1=2,公比为2,
dn+n=2n
dn=2n-n
点评:本题考查了等差数列与等比数列的通项公式、“裂项求和”、两点之间的距离公式、极限的运算性质,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知cosαcosβ-sinαsinβ=0,那么sinαcosβ+cosαsinβ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数g(x)=4×3x的图象可看成将函数f(x)=3x的图象(  )
A、向左平移log34个单位得到
B、各点横坐标不变,纵坐标伸长的原来的4倍得到
C、向右平移log34个单位得到
D、各点纵坐标不变,横坐标缩短的原来的
1
4
倍得到

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α是第一象限的角,且cosα=
5
5

(1)求sinα和tanα的值;
(2)求sin(α+
π
6
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆上的点.
(1)求证:平面PAC⊥平面PBC.
(2)设Q为PA的中点,G为△AOC的重心,求证:OG∥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

过圆锥的高上的两点分别作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为1:3:5,则这两点把高分成的三段之比是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

将棱长为2的正方形割除若干部分后的一几何体,其三视图如右图所示,则该几何体的体积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x+1|,x≤0
|log2x|,x>0
,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则x3(x1+x2)+
1
x
2
3
x4
的取值范围是(  )
A、(-1,+∞)
B、(-1,1]
C、(-∞,1)
D、[-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,收集数据如下:
实验顺序第一次第二次第三次第四次第五次
零件数x(个)1020304050
加工时间y(分钟)6267758089
(Ⅰ)在5次试验中任取2次,记加工时间分别为a,b,求事件:加工时间a,b均小于80分钟的概率;
(Ⅱ)请根据第二次、第三次、第四次试验的数据,求出y关于x的线性回归方程
y
=
b
x+
a
,参考公式如下:
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
a
=
.
y
-
b
.
x
.
x
=
x1+x2+…+xn
n
.
y
=
y1+y2+…+yn
n

查看答案和解析>>

同步练习册答案