精英家教网 > 高中数学 > 题目详情
8.各位数字之和为8的正整数(如8,17,224)按从小到大的顺序构成数列{an},若an=2015,则n=(  )
A.56B.72C.83D.124

分析 由题意需要分类讨论,当为一位数字时,当为两位数时,当为三位数时,当为四位数时,根据分类计数原理可得.

解答 解:当为一位数时,只有8,只有1种,
当为两位数时,因为1+7=8,2+6=8,3+5=8,4+4=8,8+0=8,故有3A22+2=8种,
当为三位数时,因为8+0+0=8,有1种,1+0+7=2+0+6=3+0+5=8,有3A21A22=12种,1+3+4=1+2+5=8,有2A33=12种,1+1+6=2+2+4=2+3+3=8,有3A31=9种,4+0+4=8,有2种,共有1+12+12+9+2=36种,
当为四位数时,千位为1时,1+0+6=2+0+5=3+0+4=1+2+4=7,有4A33=24种,7+0+0=1+1+5=2+2+3=3+3+1=7,有4A31=12种,共有24+12=36种,
当为四位数时,千位为2时,百位为0时,十位为0时,有2+0+0+6=8,有1种,
当为四位数时,千位为2时,百位为0时,十位为1时,有2+0+1+5=8,有1种,
共有1+8+36+36+1+1=83种,
所以n=83.
故选:C

点评 本题考查了分类计数原理,关键是掌握分类的原则,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知等差数列{an}的前n项和为Sn,若S11=S16,且am+a12=0,则m=(  )
A.16B.14C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.商场决定对某电器商品采用“提价抽奖”方式进行促销,即将该商品的售价提高100元,但是购买此商品的顾客可以抽奖.规定购买该商品的顾客有3次抽奖机会:若中一次奖,则获得数额为m元的奖金;若中两次奖,则共获得数额为3m元的奖金;若中3次奖,则获得数额为6m的奖金.假设顾客每次中奖的概率都是$\frac{1}{3}$.设顾客三次抽奖后所获得的奖金总额为随机变量ξ.
(Ⅰ)求ξ的分布列;
(Ⅱ)若要使促销方案对商场有利,试问商场最高能将奖金数额m定位多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.交通指数是拥堵的简称,是综合反映道路网畅通或拥堵的概念,记为T.其范围为[0,10],分别有五个级别:T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T[6,8)中度拥堵;T∈[8,10)严重拥堵.在晚高峰时段(T≥2),从某市指挥中心选取了市区20个路段,依据其数据绘制的频率分布直方图如图所示.
(Ⅰ)在这20个路段中,随机选取了两个路段,求这两个路段至少有一个未出现严重拥堵的概率;
(Ⅱ)从这20个路段中随机抽取3个路段,用X表示抽取的中度拥堵的路段的个数,求X的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f (x)=ex+4x-kx在区间($\frac{1}{2}$,+∞)上是增函数,则实数k的最大值是(  )
A.2+eB.2+$\sqrt{e}$C.4+eD.4ln2+$\sqrt{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一个袋子中有7个除颜色外完全相同的小球,其中5个红色,2个黑色.从袋中随机地取出3个小球.其中取到黑球的个数为ξ,则Eξ=$\frac{6}{7}$(结果用最简分数作答).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图所示的程序框图,若输入n=2015,则输出的s值为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=|x2-a|+x2+kx,(a为常数且0<a<4).
(1)若a=k=1,求不等式f(x)>2的解集;
(2)若函数f(x)在(0,2)上有两个零点x1,x2.求$\frac{1}{x_1}$+$\frac{1}{x_2}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}\right.$ 设实数x,y满足$\left\{\begin{array}{l}{x+2y≤6}\\{2x+y≤6}\\{x≥0,y≥0}\end{array}\right.$则max{2x+3y-1,x+2y+2}的取值范围是(  )
A.[2,9]B.[-1,9]C.[-1,8]D.[2,8]

查看答案和解析>>

同步练习册答案