精英家教网 > 高中数学 > 题目详情
20.已知抛物线y=x2在点A(1,1)处的切线为l.
(1)求切线l的方程;
(2)若切线l经过椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的一个焦点和顶点,求该椭圆的方程.

分析 (1)求导,由抛物线在点A(1,1)处的切线为l的斜率k=k=y'|x=1=2,由点斜式方程即可求得切线l的方程;
(2)由题意可知求得切线与x和y的轴的焦点,求得c和b的值,由椭圆的性质可知a2=b2+c2,即可求得该椭圆的方程.

解答 解:(1)k=y'|x=1=2x|x=1=2,…(2分)
切点A(1,1),所以切线l的方程为y-1=2(x-1)
即y=2x-1…(4分)
(2)令y=0,则x=$\frac{1}{2}$,所以切线与x轴的交点为$B(\frac{1}{2},0)$…(5分)
令x=0,则y=-1,所以切线与y轴的交点为C(0,-1)
所以$c=\frac{1}{2},b=1$,
$a=\sqrt{{b^2}+{c^2}}=\frac{{\sqrt{5}}}{2}$
所求椭圆方程为$\frac{{4{x^2}}}{5}+{y^2}=1$.

点评 本题考查利用导数求曲线的切线方程及椭圆的简单性质,考查导数的运算,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知a=-2${∫}_{0}^{\frac{π}{2}}$(sin2$\frac{x}{2}$-$\frac{1}{2}$)dx,则二项式(ax+$\frac{1}{2ax}$)9的展开式中x的一次项系数为(  )
A.-$\frac{63}{16}$B.$\frac{63}{16}$C.-$\frac{63}{8}$D.$\frac{63}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a=$\int_0^{\sqrt{6}}$2xdx,则(x-$\frac{1}{x}$)a的二项展开式中常数项为-20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|x2-4x+3<0},B={y|y=x2,x∈R},则A∩B=(  )
A.B.[0,1)∪(3,+∞)C.AD.B

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图所示,在直三棱柱ABC-A1B1C1中,AB=BC=AA1,AB⊥BC,点E、F分别是棱AB、BB1的中点,则直线EF和BC1所成的角是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若点M是△ABC所在平面内一点,且满足$\overrightarrow{MA}$+$\overrightarrow{MB}$+$\overrightarrow{MC}$=$\overrightarrow 0$,则S△ABM:S△ABC等于(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入的部分数据如表:
x$\frac{π}{6}$$\frac{7π}{6}$
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
Asin(ωx+φ)020-2
(Ⅰ)请将上表数据补全,并直接写出函数f(x)的解析式;
(Ⅱ)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某制造商为运动会生产一批直径为40mm的乒乓球,现随机抽样检查20只,测得每只球的直径(单位:mm,保留两位小数)如下:
40    02 40.00 39.98 40.00 39.99
40    00 39.98 40.01 39.98 39.99
40    00 39.99 39.95 40.01 40.02
39    98 40.00 39.99 40.00 39.96
(1)完成下面的频率分布表,并画出频率分布直方图;
分组频数频率$\frac{频率}{组距}$
[39.95,39.97)2         0.10       5
[39.97,39.99)40.2010
[39.99,40.01)100.5025
[40.01,40.03]40.2010
合计20150
(2)假定乒乓球的直径误差不超过0.03mm为合格品,若这批乒乓球的总数为10 000只,试根据抽样检查结果估计这批产品的合格只数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,直线PA⊥平面ABCD,AD∥BC,AB⊥AD,BC=2AB=2AD=4BE=4.
(I)求证:直线DE⊥平面PAC.
(Ⅱ)若直线PE与平面PAC所成的角的正弦值为$\frac{\sqrt{5}}{5}$,求二面角A-PC-D的平面角的余弦值.

查看答案和解析>>

同步练习册答案