精英家教网 > 高中数学 > 题目详情
12.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入的部分数据如表:
x$\frac{π}{6}$$\frac{7π}{6}$
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
Asin(ωx+φ)020-2
(Ⅰ)请将上表数据补全,并直接写出函数f(x)的解析式;
(Ⅱ)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的值域.

分析 (Ⅰ)由表中数据可得A,列关于ω、φ的二元一次方程组,求得ω、φ的值,得到函数解析式;
(Ⅱ)根据x的范围,可求2x-$\frac{π}{3}$的范围,利用正弦函数的性质即可得解值域.

解答 (本小题满分12分)
解:(I)将表数据补全如下:

x$\frac{π}{6}$$\frac{5π}{12}$$\frac{2π}{3}$$\frac{11π}{12}$$\frac{7π}{6}$
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
Asin(ωx+φ)020-20
…(4分)
由表中知A=2,
由$\left\{\begin{array}{l}ω•\frac{5π}{12}+φ=\frac{π}{2}\\ ω•\frac{11π}{12}+φ=\frac{3π}{2}\end{array}\right.$,解得ω=2,$φ=-\frac{π}{3}$,
所以$f(x)=2sin(2x-\frac{π}{3})$;…(8分)
(II)因为$x∈[0,\frac{π}{2}]$,
所以$({2x-\frac{π}{3}})∈[-\frac{π}{3},\frac{2π}{3}]$,
则$-\frac{{\sqrt{3}}}{2}≤sin(2x-\frac{π}{3})≤1$,
所以$f(x)=2sin(2x-\frac{π}{3})$的值域为$[-\sqrt{3},2]$.…(12分)

点评 本题考查了由y=Asin(ωx+φ)的部分图象求解函数解析式,考查了y=Asin(ωx+φ)的性质,训练了五点作图法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.如图,F1、F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线的左右两支分别交于点A、B.若△ABF2为等边三角形,则双曲线的离心率为$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.化简$\frac{cos40°}{cos25°\sqrt{1-sin40°}}$=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知抛物线y=x2在点A(1,1)处的切线为l.
(1)求切线l的方程;
(2)若切线l经过椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的一个焦点和顶点,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设$\overrightarrow{a}$与$\overrightarrow{b}$是两个不共线向量,且向量2$\overrightarrow{a}$+k$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$共线,则k=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.命题“若x2+x-6>0,则x>2或x<-3”的否命题为“若x2+x-6≤0,则-3≤x≤2”.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.i2016=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在平面直角坐标系中的一条双曲线,它的中心在原点,渐近线方程为y=±$\frac{1}{2}$x,且过点A(2$\sqrt{3}$,-1)
(Ⅰ)求该双曲线的标准方程及离心率;
(Ⅱ)经过点A(1,1)作直线l交双曲线于不同两点M,N,且点A是线段MN的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=(ax-1)ex( a∈R)在区间[0,1]上是单调增函数,则实数a的取值范围是(  )
A.(0,1)B.(0,1]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

同步练习册答案