精英家教网 > 高中数学 > 题目详情
3.化简$\frac{cos40°}{cos25°\sqrt{1-sin40°}}$=$\sqrt{2}$.

分析 利用二倍角的余弦函数公式化简,分母中被开方数利用同角三角函数间基本关系,完全平方公式以及二次根式的性质化简,约分后再利用两角和与差的正弦函数公式变形,约分即可得到结果.

解答 解:原式=$\frac{co{s}^{2}20°-si{n}^{2}20°}{cos25°\sqrt{(cos20°-sin20°)^{2}}}$=$\frac{cos20°+sin20°}{cos25°}$=$\frac{\sqrt{2}cos(45°-20°)}{cos25°}$=$\sqrt{2}$,
故答案为:$\sqrt{2}$.

点评 本题考查了同角三角函数间基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.△ABC中,A=$\frac{π}{6}$,b=2,以下命题中正确的序号是①②③.
①若a=1,则c有一解;                  
②若a=$\sqrt{3}$,则c有两解;
③若a=$\frac{11}{6}$,则c有两解;                
④若a=3,则c有两解.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=25x3+13x2+2016x-5,则f'(0)=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a=$\int_0^{\sqrt{6}}$2xdx,则(x-$\frac{1}{x}$)a的二项展开式中常数项为-20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.光线从点A(-2,1)射到x轴后反射到B(4,3)则光线从A到B经过的总路线为(  )
A.2$\sqrt{10}$B.2$\sqrt{13}$C.2$\sqrt{11}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|x2-4x+3<0},B={y|y=x2,x∈R},则A∩B=(  )
A.B.[0,1)∪(3,+∞)C.AD.B

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图所示,在直三棱柱ABC-A1B1C1中,AB=BC=AA1,AB⊥BC,点E、F分别是棱AB、BB1的中点,则直线EF和BC1所成的角是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入的部分数据如表:
x$\frac{π}{6}$$\frac{7π}{6}$
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
Asin(ωx+φ)020-2
(Ⅰ)请将上表数据补全,并直接写出函数f(x)的解析式;
(Ⅱ)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且过点(1,$\frac{{\sqrt{2}}}{2}$).
(Ⅰ)求C1的方程;
(Ⅱ)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.

查看答案和解析>>

同步练习册答案