分析 根据双曲线的定义算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等边三角形得∠F1AF2=120°,利用余弦定理算出c=$\sqrt{7}$a,结合双曲线离心率公式即可算出双曲线C的离心率.
解答 解:根据双曲线的定义,可得|BF1|-|BF2|=2a,
∵△ABF2是等边三角形,即|BF2|=|AB|,
∴|BF1|-|BF2|=2a,即|BF1|-|AB|=|AF1|=2a,
又∵|AF2|-|AF1|=2a,
∴|AF2|=|AF1|+2a=4a,
∵△AF1F2中,|AF1|=2a,|AF2|=4a,∠F1AF2=120°,
∴|F1F2|2=|AF1|2+|AF2|2-2|AF1|•|AF2|cos120°,
即4c2=4a2+16a2-2×2a×4a×(-$\frac{1}{2}$)=28a2,解之得c=$\sqrt{7}$a,
由此可得双曲线C的离心率e=$\frac{c}{a}$=$\sqrt{7}$.
故答案为:$\sqrt{7}$.
点评 本题考查双曲线的定义、方程和性质,考查余弦定理的运用,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | x=$\frac{5π}{6}$ | B. | x=$\frac{2π}{3}$ | C. | x=$\frac{π}{3}$ | D. | x=-$\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{63}{16}$ | B. | $\frac{63}{16}$ | C. | -$\frac{63}{8}$ | D. | $\frac{63}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | 2-$\frac{\sqrt{2}}{2}$ | D. | 2+$\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | $\frac{π}{6}$ | $\frac{7π}{6}$ | |||
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| Asin(ωx+φ) | 0 | 2 | 0 | -2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com