精英家教网 > 高中数学 > 题目详情
20.已知中心在坐标原点的椭圆和双曲线的焦点相同,左、右焦点分别为F1,F2,这两条曲线在第一象限的交点为P,且△PF1F2是以PF1为斜边的等腰直角三角形,则椭圆和双曲线的离心率之积为(  )
A.1B.2$\sqrt{2}$+3C.2$\sqrt{2}$D.3一2$\sqrt{2}$

分析 由题意画出图形,结合图形可得焦距与P到两焦点距离的关系,从而求出椭圆和双曲线的离心率,则答案可求.

解答 解:如图,
由题意可设|PF1|=$\sqrt{2}m$,则|F1F2|=|PF2|=m,
故椭圆的离心率为$\frac{1}{\sqrt{2}+1}$,双曲线的离心率为$\frac{1}{\sqrt{2}-1}$,
它们的乘积为$\frac{1}{\sqrt{2}+1}•\frac{1}{\sqrt{2}-1}=1$.
故选:A.

点评 本题考查椭圆与双曲线的简单性质,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.观察正切函数的图象,满足|tanx|≤1的x的取值范围是 (  )
A.[2kπ-$\frac{π}{4}$,2kπ+$\frac{π}{4}$](k∈Z)B.[kπ,kπ+$\frac{π}{4}$](k∈Z)
C.[kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$](k∈Z)D.[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=2sin($\frac{π}{3}x+1$)的最小正周期是6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若x>1,则函数y=$\frac{{{x^2}+x+2}}{x-1}$的最小值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,圆O的半径为2,等腰△ABC的底边的两端点B,C在圆O上,AB与圆O交于点D,AD=2,圆O的切线DE交AC于E点.
(I)求证:DE⊥AC;
(Ⅱ)若∠A=30°,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数$f(x)=\left\{\begin{array}{l}\frac{1}{2}x+1(x≥0)\\{x^2}(x<0)\end{array}\right.$,若f(a)>a,则实数a的取值范围是a<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若y=15sin[$\frac{π}{6}$(x+1)]表示一个振动,则这个振动的初相是$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,动点M在圆x2+y2=8上,A(2,0)为一定点,则∠OMA的最大值为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知关于x的方程$\frac{lg(x-a)}{lgx-lg3}$=2.
(1)当a=1时,解此方程;
(2)若方程仅有一个实数解,求a的取值的范围,并求此解.

查看答案和解析>>

同步练习册答案