精英家教网 > 高中数学 > 题目详情
椭圆的中心在原点,焦点在x轴上,一个焦点与短轴两端点的连线互相垂直,且这个焦点到长轴上较近的端点的距离是
10
-
5
,则此椭圆的方程是:______.
设椭圆的方程为
x2
a2
+
y2
b2
=1
(a>b>0)
由于一个焦点与短轴两端点的连线互相垂直,则b=c
又由这个焦点到长轴上较近的端点的距离是
10
-
5

故a-c=
10
-
5

∵a2=b2+c2
∴a=
10
,b=c=
5

∴椭圆的方程为:
x2
10
+
y2
5
=1

故答案为:
x2
10
+
y2
5
=1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知F1(-3,0),F2(3,0)动点p满足:|PF1|+|PF2|=6,则动点P的轨迹为(  )
A.椭圆B.抛物线C.线段D.双曲线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆以对称轴为坐标轴,且长轴是短轴的3倍,并且过点(3,0),求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点(-3,2)且与
x2
9
+
y2
4
=1有相同焦点的椭圆的方程是(  )
A.
x2
15
+
y2
10
=1
B.
x2
225
+
y2
100
=1
C.
x2
10
+
y2
15
=1
D.
x2
100
+
y2
225
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的对称轴为坐标轴,短轴的一个端点和两个焦点的连线构成一个正三角形,且焦点到椭圆上的点的最短距离为
3
,则椭圆的方程为(  )
A.
x2
12
+
y2
9
=1
B.
x2
9
+
y2
12
=1
x2
12
+
y2
3
=1
C.
x2
12
+
y2
3
=1
D.
x2
12
+
y2
9
=1
x2
9
+
y2
12
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知θ为斜三角形的一个内角,曲线F:x2sin2θcos2θ+y2sin2θ=cos2θ是(  )
A.焦点在x轴上,离心率为sinθ的双曲线
B.焦点在x轴上,离心率为sinθ的椭圆
C.焦点在y轴上,离心率为|cosθ|的双曲线
D.焦点在y轴上,离心率为|cosθ|的椭圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1,抛物线C2的焦点均在y轴上,C1的中心和C2的顶点均为坐标原点O,从每条曲线上取两个点,将其坐标记录于下表中:
x0-1
2
4
y-2
2
1
16
-21
(Ⅰ)求分别适合C1,C2的方程的点的坐标;
(Ⅱ)求C1,C2的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1,F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,若在直线x=
a2
c
上存在点P,使线段PF1的中垂线过点F2,则椭圆的离心率的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设点P是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
与圆x2+y2=3b2的一个交点,F1,F2分别是椭圆的左、右焦点,且|PF1|=3|PF2|,则椭圆的离心率为(  )
A.
10
4
B.
3
5
C.
7
4
D.
14
4

查看答案和解析>>

同步练习册答案