精英家教网 > 高中数学 > 题目详情

【题目】中,角所对的边分别为,且满足

(Ⅰ)求角的大小;

(Ⅱ)若,线段的中垂线交于点,求线段的长.

【答案】(Ⅰ);(Ⅱ).

【解析】

(Ⅰ)由已知及正弦定理可求sinBcosC+sinCsinB=0,结合sinB>0,可求tanC=﹣1,结合范围0<C<π,可求C的值.

(Ⅱ)由(Ⅰ)和余弦定理可求c的值,cosB的值,设BC的中垂线交BC于点E,在Rt△BCD中,可求BD的值.

(Ⅰ)在△ABC中,∵bcosC+csinB=0,

∴由正弦定理知,sinBcosC+sinCsinB=0

∵0<Bπ

∴sinB>0,于是cosC+sinC=0,即tanC=﹣1

∵0<Cπ

(Ⅱ)由(Ⅰ)和余弦定理知,

c=5,

BC的中垂线交BC于点E

∵在Rt△BCD中,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。

求证:(1)PA∥平面BDE ;

(2)平面PAC平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为.

(1)若抛物线的焦点到准线的距离为4,直线,求直线截抛物线所得的弦长;

(2)过点的直线交抛物线两点,过点作抛物线的切线,两切线相交于点,若分别表示直线与直线的斜率,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点为参数).以为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.

(1)求点的轨迹的方程及直线的直角坐标方程;

(2)求曲线上的点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为连续10天,每天新增疑似病例不超过7”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是

A. 甲地:总体均值为3,中位数为4 B. 乙地:总体均值为1,总体方差大于0

C. 丙地:中位数为2,众数为3 D. 丁地:总体均值为2,总体方差为3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,a,b,c分别为角ABC所对的三边,

(I)求角A

(II)若,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了了解2018年当地居民网购消费情况,随机抽取了100人,对其2018年全年网购消费金额(单位:千元)进行了统计,所统计的金额均在区间内,并按,…,6组,制成如图所示的频率分布直方图.

(1)求图中的值;

(2)若将全年网购消费金额在20千元及以上者称为网购迷.结合图表数据,补全列联表,并判断是否有的把握认为样本数据中的网购迷与性别有关系?说明理由;

合计

网购迷

20

非网购迷

45

合计

下面的临界值表仅供参考:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

附: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地4个蔬菜大棚顶部,阳光照在一棵棵茁壮生长的蔬菜上,这些采用水培、无土栽培方式种植的各类蔬菜,成为该地区居民争相购买的对象,过去50周的资料显示,该地周光照量小时都在30以上,其中不足50的周数大约5周,不低于50且不超过70的周数大约有35周,超过70的大约有10周,根据统计某种改良黄瓜每个蔬菜大棚增加量百斤与每个蔬菜大棚使用农夫1号液体肥料千克之间对应数据为如图所示的折线图.

(1)依据数据的折线图,用最小二乘法求出关于的线性回归方程并根据所求线性回归方程,估计如果每个蔬菜大棚使用农夫1号肥料10千克,则这种改良黄瓜每个蔬菜大鹏增加量是多少斤?

(2)因蔬菜大棚对光照要求较大,某光照控制仪商家为应对恶劣天气对光照的影响,为该基地提供了部分光照控制仪,该商家希望安装的光照控制仪尽可能运行,但每周光照控制仪最多可运行台数受周光照量限制,并有如下关系:

周光照量单位:小时

30<X<50

光照控制仪最多可运行台数

3

2

1

若某台光照控制仪运行,则该台光照仪周利润为4000元;若某台光照仪未运行,则该台光照仪周亏损500元,欲使商家周总利润的均值达到最大,应安装光照控制仪多少台?

附:回归方程系数公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,,的平分线,且,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案