【题目】某地4个蔬菜大棚顶部,阳光照在一棵棵茁壮生长的蔬菜上,这些采用水培、无土栽培方式种植的各类蔬菜,成为该地区居民争相购买的对象,过去50周的资料显示,该地周光照量(小时)都在30以上,其中不足50的周数大约5周,不低于50且不超过70的周数大约有35周,超过70的大约有10周,根据统计某种改良黄瓜每个蔬菜大棚增加量(百斤)与每个蔬菜大棚使用农夫1号液体肥料(千克)之间对应数据为如图所示的折线图.
(1)依据数据的折线图,用最小二乘法求出关于的线性回归方程;并根据所求线性回归方程,估计如果每个蔬菜大棚使用农夫1号肥料10千克,则这种改良黄瓜每个蔬菜大鹏增加量是多少斤?
(2)因蔬菜大棚对光照要求较大,某光照控制仪商家为应对恶劣天气对光照的影响,为该基地提供了部分光照控制仪,该商家希望安装的光照控制仪尽可能运行,但每周光照控制仪最多可运行台数受周光照量限制,并有如下关系:
周光照量(单位:小时) | 30<X<50 | ||
光照控制仪最多可运行台数 | 3 | 2 | 1 |
若某台光照控制仪运行,则该台光照仪周利润为4000元;若某台光照仪未运行,则该台光照仪周亏损500元,欲使商家周总利润的均值达到最大,应安装光照控制仪多少台?
附:回归方程系数公式: , .
【答案】(1)答案见解析;(2)应该安装2台光照控制仪.
【解析】试题分析:(Ⅰ)由题中所给的数据求得线性回归方程,然后进行预测即可;
(Ⅱ)由题意分类讨论求解分布列和数学期望即可.
试题解析:
(Ⅰ),
,
,
,
所以关于的线性回归方程为,
当时, 百斤=550斤,
所以估计如果每个蔬菜大棚使用农夫1号肥料10千克,则这种改良黄瓜每个蔬菜大棚增加量是500斤.
(Ⅱ)记商家总利润为元,由已知条件可知至少需安装1台,
①安装1台光照控制仪可获得周利润4000元,
②安装2台光照控制仪的情形:
当时,一台光照控制仪运行,此时元,
当时,两台光照控制仪都运行,此时元,
故的分布列为
3500 | 8000 | |
0.2 | 0.8 |
所以元,
③安装3台光照控制仪的情形:
当时,一台光照控制仪运行,此时元,
当时,两台光照控制仪运行,此时元,
当时,三台光照控制仪都运行,此时元,
故的分布列为
3000 | 7500 | 12000 | |
0.2 | 0.7 | 0.1 |
所以元,
综上,为使商家周总利润的均值达到最大应该安装2台光照控制仪.
科目:高中数学 来源: 题型:
【题目】在圆内有一点,为圆上一动点,线段的垂直平分线与的连线交于点.
(Ⅰ)求点的轨迹方程.
(Ⅱ)若动直线与点的轨迹交于、两点,且以为直径的圆恒过坐标原点.问是否存在一个定圆与动直线总相切.若存在,求出该定圆的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,焦点在轴上,一个顶点,且右焦点到直线的距离为.
(1)求椭圆的方程.
(2)若点为椭圆的下顶点,是否存在斜率为,且过定点的直线,使与椭圆交于不同两点,且满足? 若存在,求直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程为, 的极坐标方程为.
(1)求直线与的交点的轨迹的方程;
(2)若曲线上存在4个点到直线的距离相等,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知与分别是边长为1与2的正三角形, ,四边形为直角梯形,且, ,点为的重心, 为中点, 平面, 为线段上靠近点的三等分点.
(Ⅰ)求证: 平面;
(Ⅱ)若二面角的余弦值为,试求异面直线与所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数满足.
(Ⅰ)当时,解不等式;
(Ⅱ)若关于x的方程的解集中有且只有一个元素,求a的值;
(Ⅲ)设,若对,函数在区间上的最大值与最小值的差不超过1,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的左焦点为,离心率为,为圆的圆心.
(1)求椭圆的方程;
(2)已知过椭圆右焦点的直线交椭圆于两点,过且与垂直的直线与圆交于两点,求四边形面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com