精英家教网 > 高中数学 > 题目详情

【题目】某地4个蔬菜大棚顶部,阳光照在一棵棵茁壮生长的蔬菜上,这些采用水培、无土栽培方式种植的各类蔬菜,成为该地区居民争相购买的对象,过去50周的资料显示,该地周光照量小时都在30以上,其中不足50的周数大约5周,不低于50且不超过70的周数大约有35周,超过70的大约有10周,根据统计某种改良黄瓜每个蔬菜大棚增加量百斤与每个蔬菜大棚使用农夫1号液体肥料千克之间对应数据为如图所示的折线图.

(1)依据数据的折线图,用最小二乘法求出关于的线性回归方程并根据所求线性回归方程,估计如果每个蔬菜大棚使用农夫1号肥料10千克,则这种改良黄瓜每个蔬菜大鹏增加量是多少斤?

(2)因蔬菜大棚对光照要求较大,某光照控制仪商家为应对恶劣天气对光照的影响,为该基地提供了部分光照控制仪,该商家希望安装的光照控制仪尽可能运行,但每周光照控制仪最多可运行台数受周光照量限制,并有如下关系:

周光照量单位:小时

30<X<50

光照控制仪最多可运行台数

3

2

1

若某台光照控制仪运行,则该台光照仪周利润为4000元;若某台光照仪未运行,则该台光照仪周亏损500元,欲使商家周总利润的均值达到最大,应安装光照控制仪多少台?

附:回归方程系数公式: .

【答案】(1)答案见解析;(2)应该安装2台光照控制仪.

【解析】试题分析:(Ⅰ)由题中所给的数据求得线性回归方程,然后进行预测即可;
(Ⅱ)由题意分类讨论求解分布列和数学期望即可.

试题解析:

所以关于的线性回归方程为

时, 百斤=550斤,

所以估计如果每个蔬菜大棚使用农夫1号肥料10千克,则这种改良黄瓜每个蔬菜大棚增加量500斤.

Ⅱ)记商家总利润为元,由已知条件可知至少需安装1台,

安装1台光照控制仪可获得周利润4000元,

②安装2台光照控制仪的情形:

时,一台光照控制仪运行,此时元,

时,两台光照控制仪都运行,此时元,

的分布列为

3500

8000

0.2

0.8

所以元,

③安装3台光照控制仪的情形:

时,一台光照控制仪运行,此时元,

时,两台光照控制仪运行,此时元,

时,三台光照控制仪都运行,此时元,

的分布列为

3000

7500

12000

0.2

0.7

0.1

所以

综上,为使商家周总利润的均值达到最大应该安装2台光照控制仪.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在圆内有一点,为圆上一动点,线段的垂直平分线与的连线交于点

(Ⅰ)求点的轨迹方程.

(Ⅱ)若动直线与点的轨迹交于两点,且以为直径的圆恒过坐标原点.问是否存在一个定圆与动直线总相切.若存在,求出该定圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角所对的边分别为,且满足

(Ⅰ)求角的大小;

(Ⅱ)若,线段的中垂线交于点,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,一个顶点,且右焦点到直线的距离为.

(1)求椭圆的方程.

(2)若点为椭圆的下顶点,是否存在斜率为,且过定点的直线,使与椭圆交于不同两点,且满足? 若存在,求直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程为 的极坐标方程为.

1求直线的交点的轨迹的方程;

(2)若曲线上存在4个点到直线的距离相等,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

1)若关于的不等式上恒成立,求的取值范围;

2)设函数上存在极值,求的取值范围,并判断极值的正负.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知分别是边长为12的正三角形, 四边形为直角梯形 的重心 中点 平面 为线段上靠近点的三等分点.

(Ⅰ)求证: 平面

(Ⅱ)若二面角的余弦值为试求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数满足

(Ⅰ)当时,解不等式

(Ⅱ)若关于x的方程的解集中有且只有一个元素,求a的值;

(Ⅲ)设,若对,函数在区间上的最大值与最小值的差不超过1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左焦点为离心率为为圆的圆心.

(1)求椭圆的方程;

(2)已知过椭圆右焦点的直线交椭圆于两点,过且与垂直的直线与圆交于两点,求四边形面积的取值范围.

查看答案和解析>>

同步练习册答案