精英家教网 > 高中数学 > 题目详情
某银行柜台有服务窗口①,假设顾客在此办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:
办理业务所需的时间/分 1 2 3 4 5
        频率 0.1 0.4 a 0.1 0.1
从第一个顾客开始办理业务时计时,
(1)求a的值;
(2)估计第三个顾客恰好等待4分钟开始办理业务的概率.
考点:等可能事件的概率,离散型随机变量的期望与方差
专题:概率与统计
分析:(1)由频率和为1,即可得到a的值;
(2)设Y表示顾客办理业务所需的时间,用频率估计概率,可得Y的分布列,A表示事件“第三个顾客恰好等待4分钟开始办理业务”,则时间A对应三种情形:①第一个顾客办理业务所需时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟,由此可求概率.
解答: 解:(1)由频率和为1,得到0.1+0.4+a+0.1+0.1=1,
∴a=0.3;
(2)设Y表示顾客办理业务所需的时间,用频率估计概率,得Y的分布如下:
Y 1 2 3 4 5
P 0.1 0.4 0.3 0.1 0.1
(1)A表示事件“第三个顾客恰好等待4分钟开始办理业务”,则时间A对应三种情形:
①第一个顾客办理业务所需时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;
②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;
③第一个和第二个顾客办理业务所需的时间均为2分钟.
所以 P(A)=0.1×0.3+0.3×0.1+0.4×0.4=0.22.
点评:本题考查概率的求解,解题的关键是明确变量的取值与含义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(3,2),
b
=(-2,3),则
a
b
的关系是(  )
A、
a
b
B、
a
b
C、
a
=
b
D、没有关系

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+
1
x
+(1-a)lnx.
(Ⅰ)当a=2时,求曲线y=f(x)在x=1处的切线方程;
(Ⅱ)若a≤0,讨论函数求f(x)的单调性;
(Ⅲ)若关于x的方程f(x)=ax在(0,1)上有两个相异实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在一个周期内的图象如图,
(1)求函数的解析式;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某大风车的半径为2m,每12s逆时针旋转一周,它的最低点O离地面0.5m.风车圆周上一点A从最低点O开始,运动t(s)后与地面的距离为f(t).
(1)求函数f(t)的关系式;
(2)经过多长时间A点离地面的距离为1.5cm.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差大于0的等差数列{an},a2=4,且a2,a4-2,a6成等比数列.
(1)求数列{an}的通项公式;
(2)数列{bn}的通项公式是bn=2an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在(
x
2
-
2
x
6的二项展开式中,x2的系数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(x2-
1
2x
9的展开式中x9的系数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z=2-(x2-2x+2)i,x∈R,则复数z对应点在第
 
象限.

查看答案和解析>>

同步练习册答案