精英家教网 > 高中数学 > 题目详情
(x2-
1
2x
9的展开式中x9的系数是
 
考点:二项式系数的性质
专题:二项式定理
分析:设所求系数为a,则存在非负整数r,使(-1)rC
 
r
9
•(
1
2
rx18-3r=ax9成立,再由
18-3r=9
a=(-1)r•(
1
2
)
r
•C
r
9
,解得r的值,可得所求系数a的值.
解答: 解:设所求系数为a,则由二项展开式的通项公式知,存在非负整数r,
使C
 
r
9
(x29-r(-
1
2x
r=ax9,即(-1)rC
 
r
9
•(
1
2
rx18-3r=ax9
所以,得
18-3r=9
a=(-1)r•(
1
2
)
r
•C
r
9
,解得r=3,所求系数为a=-
1
8
C
 
3
9
=-
21
2

故答案为:-
21
2
点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn+an=1,数列{bn}满足bn+log2an=0,
(1)求数列{an}的通项公式;
(2)求数列{
1
bnbn+1
}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

某银行柜台有服务窗口①,假设顾客在此办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:
办理业务所需的时间/分 1 2 3 4 5
        频率 0.1 0.4 a 0.1 0.1
从第一个顾客开始办理业务时计时,
(1)求a的值;
(2)估计第三个顾客恰好等待4分钟开始办理业务的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在四棱锥P一ABCD中,底面ABCD为直角梯形,AD∥BC,∠BAD=90°.BC=2AD,AC与BD交于点O,点M,N分别在线PC、AB上,
CM
MP
=
BN
NA
=2.
(Ⅰ)求证:平面MNO∥平面PAD;
(Ⅱ)若平面PA⊥平面ABCD,∠PDA=60°,且PD=DC=BC=2,求二面角B-AM-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,AA1=2,E为AA1的中点,O为BD1的中点.
(Ⅰ)求证:平面A1BD1⊥平面ABB1A1
(Ⅱ)求证:EO∥平面ABCD;
(Ⅲ)设P为正方体ABCD-A1B1C1D1棱上一点,给出满足条件OP=
2
的点P的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,a2n=a2n-1+(-1)n,a2n+1=a2n+3n(n∈N*).
(1)求a3、a5、a7的值;
(2)求a2n-1(用含n的式子表示);
(3)(理)记数列{an}的前n项和为Sn,求Sn(用含n的式子表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

正项数列{an}满足:它的平方数列{an2}是公差为1,第4项为4的等差数列.
(1)求数列{an}的通项公式;
(2)若数列bn=
1
an+1+an
的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

sin23°+cos75°•sin52°
cos23°-sin75°•sin52°
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某四棱锥的三视图所示,其中俯视图和左视图都是腰长为4的等腰直角三角形,主视图为直角梯形,则几何体的体积是
 

查看答案和解析>>

同步练习册答案