精英家教网 > 高中数学 > 题目详情
已知公差大于0的等差数列{an},a2=4,且a2,a4-2,a6成等比数列.
(1)求数列{an}的通项公式;
(2)数列{bn}的通项公式是bn=2an,求数列{bn}的前n项和Sn
考点:数列的求和,等比数列的性质
专题:等差数列与等比数列
分析:(1)由题意列出方程解得d,写出通项公式;
(2)易得数列{bn}是首项为2,公比为8的等比数列,利用前n项和公式求出数列{bn}的前n项和Sn
解答: 解:(1)设等差数列的公差为d,由题意得(a4-2)2=a2a6
即(4+2d-2)2=4(4+4d),解得d=3或d=-1(舍去)
∴an=3n-2.
(2)由(1)得bn=2an=23n-2=2•8n-1
∴数列{bn}是首项为2,公比为8的等比数列,
∴sn=
2(1-8n)
1-8
=
2
7
(8n-1).
点评:本题考查等差数列及等比数列的有关性质的应用,注意方程思想的运用,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知M={x|x=2m-1,m∈Z},N={x|x2-x-12<0,x∈R},则集合M∩N等于(  )
A、{-3,-1,1,3}
B、{1,3}
C、{0,1,2,3}
D、{-1,1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,点A,B是单位圆O上的两点,点C是圆O与x轴正半轴的交点,将锐角α的终边OA按逆时针方向旋转
π
3
到OB.
(1)若A的坐标为(
3
5
4
5
),求点B的横坐标;                          
(2)求|BC|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:A(cos2x,sin2x),其中0≤x<π,B(1,1),
OA
+
OB
=
OC
,f(x)=|
OC
|2
(1)求f(x)的对称轴和对称中心;  
(2)求f(x)的单调递增区间.(提示:sinα+cosα=
2
sin(α+
π
4
))

查看答案和解析>>

科目:高中数学 来源: 题型:

某银行柜台有服务窗口①,假设顾客在此办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:
办理业务所需的时间/分 1 2 3 4 5
        频率 0.1 0.4 a 0.1 0.1
从第一个顾客开始办理业务时计时,
(1)求a的值;
(2)估计第三个顾客恰好等待4分钟开始办理业务的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的等比数列{an}的首项a1=2,Sn为其前n项和,若5S1,S3,3S2成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log2an,cn=
2
bnbn+1
,记数列{cn}的前n项和为Tn.若对于任意的n∈N*,Tn≤λ(n+4)恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在四棱锥P一ABCD中,底面ABCD为直角梯形,AD∥BC,∠BAD=90°.BC=2AD,AC与BD交于点O,点M,N分别在线PC、AB上,
CM
MP
=
BN
NA
=2.
(Ⅰ)求证:平面MNO∥平面PAD;
(Ⅱ)若平面PA⊥平面ABCD,∠PDA=60°,且PD=DC=BC=2,求二面角B-AM-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,a2n=a2n-1+(-1)n,a2n+1=a2n+3n(n∈N*).
(1)求a3、a5、a7的值;
(2)求a2n-1(用含n的式子表示);
(3)(理)记数列{an}的前n项和为Sn,求Sn(用含n的式子表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们不同在一个食堂用餐的概率为
 

查看答案和解析>>

同步练习册答案