精英家教网 > 高中数学 > 题目详情
15.已知△ABC中,sinA+2sinBcosC=0,则tanA的最大值是(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\sqrt{3}$D.$\frac{{4\sqrt{3}}}{3}$

分析 sinA+2sinBcosC=0,利用三角形内角和定理与诱导公式可得:sin(B+C)+2sinBcosC=0,展开化为:3sinBcosC+cosBsinC=0,cosC≠0,cosB≠0.因此3tanB=-tanC.可得:B为锐角,C为钝角.tanA=-tan(B+C)展开代入利用基本不等式的性质即可得出.

解答 解:∵sinA+2sinBcosC=0,∴sin(B+C)+2sinBcosC=0,
∴3sinBcosC+cosBsinC=0,cosC≠0,cosB≠0.
化为3tanB=-tanC.可得:B为锐角,C为钝角.
∴tanA=-tan(B+C)=-$\frac{tanB+tanC}{1-tanBtanC}$=$\frac{-(tanB-3tanB)}{1+3ta{n}^{2}B}$
=$\frac{2}{\frac{1}{tanB}+3tanB}$≤$\frac{2}{2\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,当且仅当tanB=$\frac{\sqrt{3}}{3}$时取等号.
∴tanA的最大值是$\frac{\sqrt{3}}{3}$.
故选:A.

点评 本题考查了三角形内角和定理、诱导公式、和差公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.幂函数f(x)=(m2-m-1)x5m+3在(0,+∞)上是增函数,则m=(  )
A.2B.-1C.4D.2或-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)=${e^x}({{x^3}+\frac{3}{2}{x^2}-6x+2})-2a{e^x}$-x,若不等式f(x)≤0在[-2,+∞)上有解,则实数a的最小值为(  )
A.$-\frac{3}{2}-\frac{1}{e}$B.$-\frac{3}{2}-\frac{2}{e}$C.$-\frac{3}{4}-\frac{1}{2e}$D.$-1-\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$cos(π+θ)=-\frac{2}{3}$,$θ∈(-\frac{π}{2},0)$,则θ=-arccos$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为9尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有(  )
A.14斛B.28斛C.36斛D.66斛

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若l,m表示两条不相同的直线,α,β是两个不同的平面,则下列命题中为真命题的是①④(填所有正确答案的序号).
①若l⊥m,l⊥α,m⊥β,则α⊥β;        ②若l⊥m,l?α,m?β,则α⊥β;
③若l⊥β,α⊥β,则l∥α;              ④若l∥m,l⊥α,m?β,则α⊥β.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,底面ABCD是菱形,且AB=$\sqrt{2}$,∠ABC=60°,点A在平面PBC上的射影为PB的中点O,PB⊥AC.
(1)求证:PC=PD;
(2)求点A到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax3+bx2+cx+3-a(a,b,c∈R,且a≠0),当x=-1时,f(x)取到极大值2.
(1)用关于a的代数式分别表示b和c;
(2)当a=1时,求f(x)的极小值;
(3)求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,曲线C1:$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).在以O为极点,Ox为极轴的极坐标系中,曲线C2:sinθ-ρcos2θ=0.若曲线C1和曲线C2相交于A,B两点.
(Ⅰ)求曲线C2的直角坐标方程;
(Ⅱ)求点M(-1,2)到A,B两点的距离之积.

查看答案和解析>>

同步练习册答案