精英家教网 > 高中数学 > 题目详情
6.设函数f(x)=${e^x}({{x^3}+\frac{3}{2}{x^2}-6x+2})-2a{e^x}$-x,若不等式f(x)≤0在[-2,+∞)上有解,则实数a的最小值为(  )
A.$-\frac{3}{2}-\frac{1}{e}$B.$-\frac{3}{2}-\frac{2}{e}$C.$-\frac{3}{4}-\frac{1}{2e}$D.$-1-\frac{1}{e}$

分析 依题意,可得2a≥[$\frac{{e}^{x}({x}^{3}+\frac{3}{2}{x}^{2}-6x+2)-x}{{e}^{x}}$]min(x≥-2),构造函数g(x)=$\frac{{e}^{x}({x}^{3}+\frac{3}{2}{x}^{2}-6x+2)-x}{{e}^{x}}$=${x}^{3}+\frac{3}{2}{x}^{2}-6x+2$-$\frac{x}{{e}^{x}}$,利用导数法可求得g(x)的极小值g(1)=1+$\frac{3}{2}$-6+2-$\frac{1}{e}$=-$\frac{3}{2}$-$\frac{1}{e}$,也是最小值,从而可得答案.

解答 解:f(x)=${e^x}({{x^3}+\frac{3}{2}{x^2}-6x+2})-2a{e^x}$-x≤0在[-2,+∞)上有解
?2aex≥${e}^{x}({x}^{3}+\frac{3}{2}{x}^{2}-6x+2)$-x在[-2,+∞)上有解
?2a≥[$\frac{{e}^{x}({x}^{3}+\frac{3}{2}{x}^{2}-6x+2)-x}{{e}^{x}}$]min(x≥-2).
令g(x)=$\frac{{e}^{x}({x}^{3}+\frac{3}{2}{x}^{2}-6x+2)-x}{{e}^{x}}$=${x}^{3}+\frac{3}{2}{x}^{2}-6x+2$-$\frac{x}{{e}^{x}}$,
则g′(x)=3x2+3x-6-$\frac{1-x}{{e}^{x}}$=(x-1)(3x+6+$\frac{1}{{e}^{x}}$),
∵x∈[-2,+∞),
∴当x∈[-2,1)时,g′(x)<0,g(x)在区间[-2,1)上单调递减;
当x∈(1,+∞)时g′(x)>0,g(x)在区间(1,+∞)上单调递增;
∴当x=1时,g(x)取得极小值g(1)=1+$\frac{3}{2}$-6+2-$\frac{1}{e}$=-$\frac{3}{2}$-$\frac{1}{e}$,也是最小值,
∴2a≥-$\frac{3}{2}$-$\frac{1}{e}$,
∴a≥$-\frac{3}{4}-\frac{1}{2e}$.
故选:C.

点评 本题考查函数恒成立问题,考查等价转化思想,突出分离参数法、构造法与导数法的综合运用,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知等比数列{an}的前n项和为Sn,则下列结论一定成立的是(  )
A.若a5>0,则a2017<0B.若a6>0,则a2018<0
C.若a5>0,则S2017>0D.若a6>0,则S2018>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知x为三角形中的最小角,则函数$y=sinx+\sqrt{3}cosx+1$的值域为[$\sqrt{3}+1$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设全集U=R,集合A={y|y=x2-2},B={x|x≥3},则A∩(∁UB)=(  )
A.B.{x|x≤-2}C.{x|x<3}D.{x|-2≤x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}为等比数列,且a3a13+2a82=5π,则cos(a5a11)的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.图中给出了奇函数f(x)的局部图象,已知f(x)的定义域为[-5,5]

(1)求f(0);    
(2)试补全其图象; 
(3)并比较f(1)与f(3)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将函数f(x)=$\frac{1}{2}sin({2x+φ})$的图象向左平移$\frac{π}{6}$个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象关于x=$\frac{π}{3}$对称,则|φ|的最小值为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知△ABC中,sinA+2sinBcosC=0,则tanA的最大值是(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\sqrt{3}$D.$\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知定义在[0,1]上的函数y=f(x),f′(x)为f(x)的导函数,f(x)图象如图,对满足0<x1<x2<1的任意x1,x2,给出下列结论:
①f(x1)-f(x2)>x1-x2
②x2f(x1)>x1f(x2);
③$\frac{f({x}_{1})+f({x}_{2})}{2}$<f($\frac{{x}_{1}+{x}_{2}}{2}$);
④[f′(x1)-f′(x2)]•(x1-x2)>0.
则下列结论中正确的是②③.

查看答案和解析>>

同步练习册答案