精英家教网 > 高中数学 > 题目详情
14.设全集U=R,集合A={y|y=x2-2},B={x|x≥3},则A∩(∁UB)=(  )
A.B.{x|x≤-2}C.{x|x<3}D.{x|-2≤x<3}

分析 化简集合A,求出B的补集,由交集含义即可得到所求.

解答 解:∵集合A={y|y=x2-2}={y|y≥-2},
B={x|x≥3},∁UB={x|x<3},
∴A∩(∁UB)={x|-2≤x<3}.
故选:D.

点评 本题考查集合的运算,注意运用交、补集的含义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知抛物线y2=2px(p>0)的焦点为F,点P是抛物线上的一点,且其纵坐标为4,|PF|=4.
(1)求抛物线的方程;
(2)直线l交抛物线于A、B两点,O为坐标原点,且△OAB的重心为 $(\frac{4}{3},\frac{4}{3})$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.幂函数f(x)=(m2-m-1)x5m+3在(0,+∞)上是增函数,则m=(  )
A.2B.-1C.4D.2或-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知两定点A(-1,0)和B(1,0),动点P(x,y)在直线l:y=x+3上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{10}}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{2\sqrt{10}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow m=(\sqrt{3}sinωx,1)$,$\overrightarrow n=(cosωx,{cos^2}ωx+1)$,设函数f(x)=$\overrightarrow m•\overrightarrow n$+b.
(1)若函数f(x)的图象关于直线x=$\frac{π}{6}$对称,且ω∈[0,3]时,求函数f(x)的单调增区间;
(2)在(1)的条件下,当$x∈[{0,\frac{7π}{12}}]$时,函数f(x)有且只有一个零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知圆C的面积被直线y=x平分,且圆C过点(2,0),则该圆面积最小时的圆方程为(x-1)2+(y-1)2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)=${e^x}({{x^3}+\frac{3}{2}{x^2}-6x+2})-2a{e^x}$-x,若不等式f(x)≤0在[-2,+∞)上有解,则实数a的最小值为(  )
A.$-\frac{3}{2}-\frac{1}{e}$B.$-\frac{3}{2}-\frac{2}{e}$C.$-\frac{3}{4}-\frac{1}{2e}$D.$-1-\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$cos(π+θ)=-\frac{2}{3}$,$θ∈(-\frac{π}{2},0)$,则θ=-arccos$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax3+bx2+cx+3-a(a,b,c∈R,且a≠0),当x=-1时,f(x)取到极大值2.
(1)用关于a的代数式分别表示b和c;
(2)当a=1时,求f(x)的极小值;
(3)求a的取值范围.

查看答案和解析>>

同步练习册答案